### ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

# ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОСНАБЖЕНИЕ В СТРОИТЕЛЬСТВЕ

# **Методические указания и контрольные** задания

для студентов специальности 27010265

Составитель Е. Н. Меньшов

УДК 621.3(076) ББК31.2я7 Э45

Рецензент доцент кафедры «Аэронавигация» УВАУГА (г. Ульяновск) Е. В. Антонец

Одобрено секцией методических пособий научно-методического совета университета

Электротехника и электроснабжение в строительстве : методические Э45 указания и контрольные задания / сост. Е. Н. Меньшов. - Ульяновск : УлГТУ, 2007.-29 с.

Указания предназначены для студентов строительного факультета. Методические указания и объяснения наиболее трудных положений облегчают студентам выполнение контрольных работ, улучшают усвоение теоретического материала, упрощают организацию самостоятельной работы.

Работа подготовлена на основе переработки методического материала кафедры «Электроснабжение», цикла ТОЭ УлГТУ.

УДК 621.3(076) ББК31.2я7

© Е. Н. Меньшов, составление, 2007

© Оформление. УлГТУ, 2007

## СОДЕРЖАНИЕ

| МЕТОДИ   | ІЧЕСКИЕ УКАЗАНИЯ К ВІ      | ыпо    | ЛНЕН   | ию и  | [     |        |      |
|----------|----------------------------|--------|--------|-------|-------|--------|------|
| ОФОРМ.   | лению контрольных          | ЗАД    | АНИЙ   | Í     | •     | •      | •    |
| 1. ЛИН   | <b>НЕЙНЫЕ ЭЛЕКТРИЧЕСКИ</b> | ie III | епи п  | EPEM  | ЕННС  | ого то | OKA  |
|          |                            |        |        |       |       |        |      |
|          | Методические указания      |        |        |       |       | •      | •    |
|          | Задача 2.                  |        |        |       |       |        |      |
|          | Методические указания      |        |        |       | •     |        | •    |
|          | Задача 3                   |        |        |       |       |        | •    |
| 1.3.1.   | Методические указания      |        |        |       |       |        |      |
| 2. РАСЧЕ | т мощности и выбор         | дви    | ІГАТЕ. | ля эл | IEKTP | опри   | ВОДА |
| 2.1.     | Задание.                   |        |        |       |       | •      |      |
| 2.1.1.   | Методические указания      |        | •      | •     | •     | •      | •    |
| 3. РАСЧЕ | Т СИЛОВОЙ РАСПРЕДЕЛ        | ите    | льно   | й сет | ги    |        |      |
|          | РОИТЕЛЬНОМ ОБЪЕКТЕ         |        |        |       |       |        |      |
| 3.1.     | Задание                    |        |        |       |       |        |      |
| 3.1.1.   | Методические указания      |        |        |       |       |        |      |
| БИБЛИС   | ОГРАФИЧЕСКИЙ СПІ           | 1C0    | K      |       |       |        |      |
| Приложен | ие: Рис. 3.1               |        |        |       |       |        |      |

Рис. 3.2

### МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ

Одним из основных видов самостоятельной работы по курсу «Общая электротехника и электроника» является выполнение контрольных заданий, которые позволят студентам закрепить приобретенные знания.

Требования к оформлению представленных на рецензию контрольных заланий:

- 1. на первой странице должно быть изложено задание, указан вариант задачи и все заданные величины;
- 2. основные положения решения должны быть достаточно подробно пояснены;
- 3. рисунки, графини, схемы, в том числе и заданные условием задачи, должны быть выполнены аккуратно, в удобной для чтения масштабе с соблюдением ГОСТ;
- 4. в пояснительной записке следует оставлять поля шириной не менее 4 см для замечаний рецензента;
- 5. вычисления должны быть сделаны с точностью до третьей-четвертой значащей цифры округления обязательны;
- 6. выполненные контрольные задания должны быть датированы и подписаны студентом,
  - 7. исправление ошибок в отрецензированном тексте не допускается;
- 8. исправления и переработка должны быть после первоначального текста под заголовком «Исправление ошибок».

Контрольные задания засчитываются, если решения не содержат ошибок принципиального характера и выполнены все перечисленные требования.

Работа над контрольным заданием будет успешной, если руководствоваться следующими правилами.

- 1. Начиная решение задания, указать, какие физические законы или расчетные методы предполагается использовать при решении, привести математическую запись этих законов и методов.
- 2. Тщательно подумать, какие буквенные или цифровые обозначения предполагается использовать в решении. Пояснить значение каждого обозначения.
- 3. В ходе решения задачи не следует изменять однажды принятые направления токов и наименование узлов, сопротивлений, а также обозначения, заданные условием. При решении одной и той же задачи различными методами одну и ту же величину надлежит обозначить одним и тем же буквенным символом.
- 4. Расчет каждой исходной величины следует выполнить сначала в общем виде, а затем в полученную формулу подставить числовые значения в том же порядке и привести окончательный результат с указанием единиц измерения.

- 5. Промежуточные и конечные результаты расчетов должны быть ясно выделены из общего текста.
- 6. Решение задач не следует перегружать приведением всех алгебраических преобразований и арифметических расчетов.
  - 7. Каждому этапу решения задачи давать пояснения.
- 8. При построении кривых выбирать, такой масштаб, чтобы на 1 см оси координат приходилось  $1:10^{\Pi}$  или  $2:10^{\Pi}$  единиц измерения физической величены, где n-целое число. Градуировку осей выполнять, начиная с нуля, равномерно через один или через два сантиметра. Весь график в целом и отдельные кривые на нем должны иметь названия.

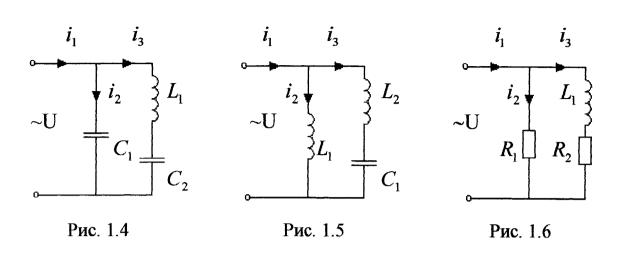
# 1. ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

### 1.1. Задача 1

Для заданного группового варианта (табл. 1.1.) по известным параметрам и схеме электрической цепи переменного тока частотой f=50 Гц (табл. 1.2 ирис. 1.1 - 1.9)требуется:

- 1) рассчитать индуктивные и емкостные сопротивления;
- 2) рассчитать токи и напряжения всех элементов цепи.
- 3) вычислить активную, реактивную, полную мощности на каждом элементе цепи и составить уравнения баланса мощностей в цепи.
- 4) построить векторную диаграмму токов и напряжений всей цепи (при построении векторной диаграммы напряжений соблюсти топографический принцип).

*Примечание*: ток на входе цепи определить из векторной диаграммы токов.


Таблица 1.1.

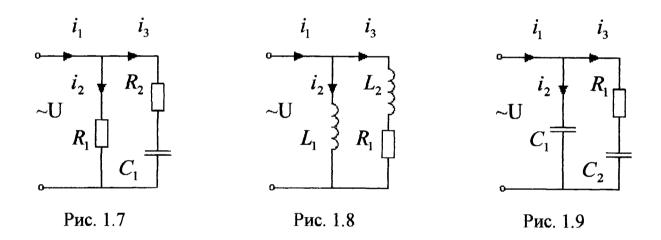

| Группа |     | Исходное воздейств | ие  |
|--------|-----|--------------------|-----|
|        |     |                    |     |
| 1      |     |                    | 1   |
| 2      | 220 | 5                  | 3   |
| 3      | 380 | 4                  | 2   |
| 4      | 40  | 1                  | 0,5 |
|        |     |                    |     |

Таблица 1.2

|           |           |           | Парам             |                   |                      |                      | M <sub>2</sub> |             |                |       |
|-----------|-----------|-----------|-------------------|-------------------|----------------------|----------------------|----------------|-------------|----------------|-------|
| No<br>n/n | $R_1$ ,Ом | $R_2$ ,Ом | $C_1$ , мк $\Phi$ | $C_2$ , мк $\Phi$ | $L_1$ , м $\Gamma$ н | $L_2$ , м $\Gamma$ н | $U_{ex}, B$    | $I_2, A$    | $I_3, A$       | схемы |
| 1         | 2         | 7         | 200               | 250               | 25                   | 15                   |                |             |                | 1.1   |
| 2         | 2         | 3         | 100               | 120               | 32                   | 22                   |                |             |                | 1.2   |
| 3         | 7         | 3         | 60                | 50                | 18                   | 8                    | 6л             |             |                | 1.3   |
| 4         | 15        | 2         | 20                | 30                | 21                   | 11                   | Из табл        |             |                | 1.4   |
| 5         | 8         | 7         | 250               | 300               | 29                   | 19                   | И3             |             |                | 1.5   |
| 6         | 14        | 8         | 50                | 70                | 35                   | 25                   |                |             | _              | 1.6   |
| 7         | 4         | 2         | 110               | 100               | 15                   | 5                    |                | <del></del> |                | 1.7   |
| 8         | 7         | 5         | 70                | 80                | 40                   | 20                   |                | _           |                | 1.8   |
| 9         | 7         | 10        | 150               | 200               | 32                   | 12                   |                |             | <del></del>    | 1.9   |
| 10        | 4         | 2         | 150               | 170               | 24                   | 8                    | <del></del>    | 1.1         |                | 1.1   |
| 11        | 12        | 3         | 160               | 150               | 20                   | 12                   |                | Л.          |                | 1.2   |
| 12        | 16        | 9         | 120               | 130               | 18                   | 30                   |                | Из табл.    |                | 1.3   |
| 13        | 8         | 8         | 100               | 150               | 40                   | 22                   |                | [3 ]        |                | 1.4   |
| 14        | 18        | 20        | 200               | 220               | 26                   | 40                   |                | K           |                | 1.5   |
| 15        | 4         | 2         | 260               | 250               | 28                   | 42                   |                |             | <del></del>    | 1.6   |
| 16        | 24        | 18        | 220               | 230               | 28                   | 38                   |                | <del></del> |                | 1.7   |
| 17        | 24        | 15        | 120               | 180               | 27                   | 10                   | <del></del>    |             |                | 1.8   |
| 18        | 18        | 15        | 180               | 200               | 20                   | 17                   |                |             | <del>-</del> : | 1.9   |
| 19        | 20        | 2         | 140               | 130               | 18                   | 15                   |                |             | [. 1           | 1.1   |
| 20        | 7         | 4         | 110               | 120               | 42                   | 24                   |                |             | a6.            | 1.2   |
| 21        | 7         | 2         | 300               | 350               | 38                   | 20                   |                | <del></del> | Из табл.       | 1.3   |
| 22        | 7         | 15        | 300               | 320               | 15                   | 25                   | <del></del>    | —           | Z              | 1.4   |
| 23        | 4         | 20        | 200               | 150               | 22                   | 32                   | <del></del>    |             |                | 1.5   |
| 24        | 2         | 15        | 180               | 120               | 19                   | 29                   |                |             |                | 1.6   |
| 25        | 8         | 10        | 170               | 170               | 20                   | 40                   |                |             |                | 1.7   |







# 1.1.1. Методические указания

Анализ цепи проводится в комплексной форме.

1. Изображается комплексная схема замещения (рис. 1.10,а).

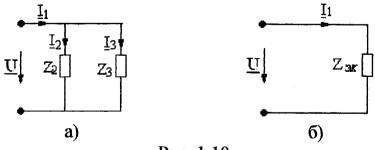



Рис. 1.10

2. Определяются комплексные сопротивления  $Z_2$ ,  $Z_3$  (рис. 1.10,a). При этом индуктивные и емкостные сопротивления рассчитываются по формулам:

$$x_{L_1} = \omega L_1$$
;  $x_{L_2} = \omega L_2$   
 $x_{C_1} = \frac{1}{\omega C_1}$   $x_{C_2} = \frac{1}{\omega C_2}$ ;

Записывается в комплексной форме заданное напряжение,  $\underline{U}_{Bx} = U_{Bx} \ e^{j\psi_{U_{Bx}}}$  или аналогично соответствующий ток  $(\underline{I}_{I}, \underline{I}_{2}, \underline{I}_{3})$ .

- 3. Анализ схемы на рис. 1.10,а проводится, например, методом преобразования. Преобразованная схема представлена на рис. 1.11,б.
- 4. При построении векторных диаграмм необходимо сначала записать соответствующие уравнения Кирхгофа: для диаграммы токов уравнение баланса токов для выбранного узла

$$\sum_{\kappa} I_{\kappa} = 0 \; ;$$

для топографической диаграммы напряжений — уравнение баланса напряжений для выбранного контура

$$\sum_{\kappa} \underline{U}_{\alpha_{\kappa}} \beta_{\kappa} = 0 .$$

Диаграммы строятся в соответствующих масштабах.

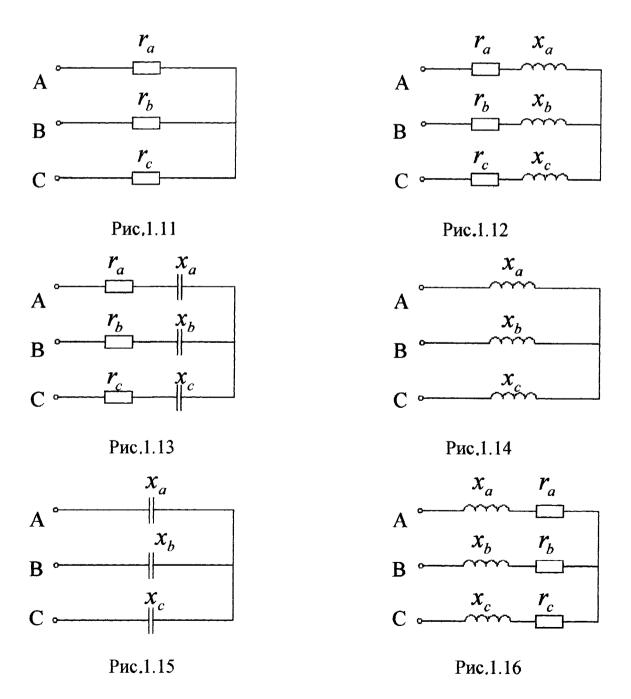
5. Уравнение баланса активной мощности

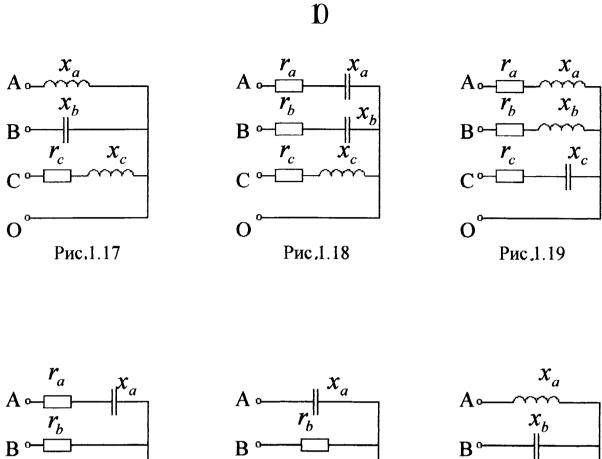
$$\sum_{\kappa=1}^{m} P_{ucm_{\kappa}} = \sum_{\kappa=1}^{n_R} R_{\kappa} I_{\kappa}^2 ,$$

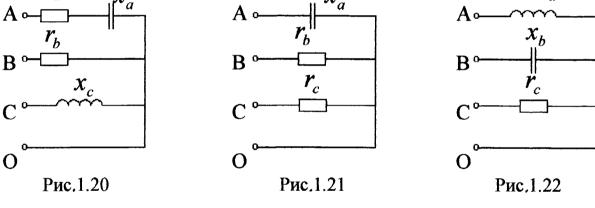
уравнение баланса реактивной мощности

$$\sum_{\kappa=1}^{m} Q_{ucm_{\kappa}} = \sum_{\kappa=1}^{n_{L}} x_{L_{\kappa}} I^{2}_{L_{\kappa}} - \sum_{\kappa=1}^{n_{C}} x_{C_{\kappa}} I^{2}_{C_{\kappa}}.$$

Здесь: m - число источников в цепи;  $n_R$  - число сопротивлений,  $n_L$  - число индуктивностей,  $n_C$  - число емкостей;  $I_\kappa I_{L\kappa} I_{C\kappa}$  - ток в k-ом сопротивлении, индуктивности, емкости соответственно,  $x_{L\kappa}$  - индуктивное сопротивление k-ой индуктивности,  $x_{C\kappa}$  - емкостное сопротивление k-ой емкости.


Полная мощность источника


$$\underline{S}_{ucm} = \underline{U}_{ex} \underline{I}^*_{ex} = P_{ucm} + jQ_{ucm}$$


## 1.2. Задача 2

Рассчитать линейные и фазные токи, активную, реактивную и полную мощности одной фазы и трехфазной цепи в целом. Схемы соединений фаз представлены рис. 1.11-1.35, а исходные данные в табл. 1.3, 1.4.

По результатам расчета построить векторную диаграмму токов и напряжений, определить по ней линейные токи, при соединении нагрузки треугольником или ток в нулевом проводе - при соединении нагрузки звездой с нулевым проводом.







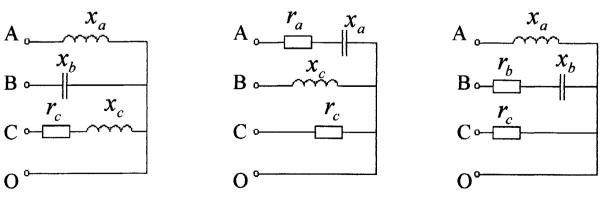



Рис.1.23

Рис.1.24

Рис.1.25

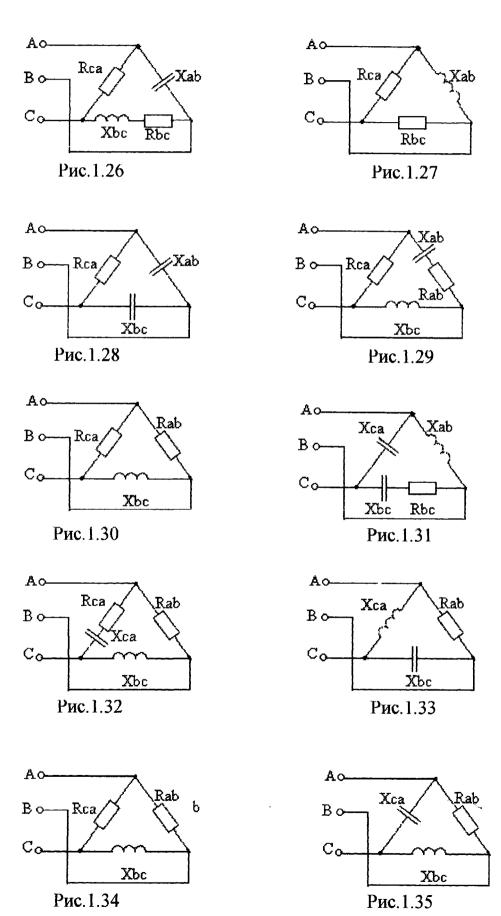



Таблица 1.3.

|          |        |        | Парам | етры   |        |                     |              | N.G.      |
|----------|--------|--------|-------|--------|--------|---------------------|--------------|-----------|
| №<br>n/n | га, Ом | ха, Ом | rь,Ом | хb, Ом | rc, Ом | Х <sub>с</sub> , Ом | $U^{\pi}$ ,в | № схемы   |
| 1        | 7      | 2      | -     | 2      | 7      | 2                   | 380          | Рис. 1.11 |
| 2        | 1,5    | 2      | 1,5   | 2      | 1,5    | 2                   | 220          | Рис. 1.12 |
| 3        | 4      | 5      | 4     | 5      | 4      | 5                   | 127          | Рис. 1.13 |
| 4        | -      | 3,5    | -     | 3,5    | -      | 3,5                 | 380          | Рис. 1.14 |
| 5        | -      | 4      | 7     | 4      | 7      | 4                   | 220          | Рис. 1.15 |
| 6        | 5      | 6      | 5     | 6      | 5      | 6                   | 127          | Рис. 1.16 |
| 7        | 1,5    | 7      | 2     | 6      | 3      | 11                  | 380          | Рис. 1.17 |
| 8        | 1      | 8      | 15    | 7      | 15     | 12                  | 220          | Рис. 1.18 |
| 9        | 6      | 3      | 5     | 2      | 8      | 7                   | 127          | Рис. 1.19 |
| 10       | 4      | 5      | 5     | 4      | 7      | 9                   | 380          | Рис. 1.20 |
| 11       | 2,5    | 6      | 3,5   | 5      | 5,5    | 10                  | 220          | Рис. 1.21 |
| 12       | 7      | 1      | 8     | 1      | 1      | 2                   | 127          | Рис. 1.22 |
| 13       | 6      | 2      | 7     | 1,5    | 9      | 4                   | 380          | Рис. 1.23 |
| 14       | 3      | 4      | 3,5   | 3      | 3,5    | 8                   | 220          | Рис. 1.24 |
| 15       | 4      | 12     | 6     | 6      | 8      | 3                   | 127          | Рис. 1.25 |
|          |        |        |       |        |        |                     |              |           |

Таблица 1.4

| <b>№</b><br>п/п | r <sup>ab</sup><br>Om | х <sup>ав</sup> .<br>Ом | r <sup>bc</sup> ,<br>Om | х <sup>ьс</sup> ,<br>Ом | r <sup>ca</sup> .<br>Ом | Х <sup>са</sup> ,<br>Ом | U <sup>л</sup> ,<br><b>В</b> | № схемы   |
|-----------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------------|-----------|
| 16              | 3                     | 7                       | 3,5                     | 6                       | 3,5                     | 8                       | 380                          | Рис. 1.26 |
| 17              | 6                     | 7                       | 7                       | 6                       | 9                       | 11                      | 220                          | Рис. 1.27 |
| 18              | 7                     | 8                       | 8                       | 7                       | 1                       | 12                      | 127                          | Рис. 1.28 |
| 19              | 2,5                   | 3,5                     | 3,5                     | 2,5                     | 5,5                     | 7,5                     | 380                          | Рис. 1.29 |
| 20              | 4                     | 5                       | 5                       | 4                       | 7                       | 9                       | 220                          | Рис. 1.30 |
| 21              | 5                     | 6                       | 6                       | 5                       | 8                       | 10                      | 127                          | Рис. 1.31 |
| 22              | 1                     | 1                       | 15                      | 1                       | 15                      | 2                       | 380                          | Рис. 1.32 |
| 23              | 1,5                   | 2                       | 2                       | 1,5                     | 3                       | 4                       | 220                          | Рис. 1.33 |
| 24              | 3                     | 4                       | 4                       | 3                       | 6                       | 8                       | 127                          | Рис. 1.34 |
| 25              | 5                     | 6                       | 6                       | 5                       | 6                       | 10                      | 380                          | Рис. 1.35 |

# 1.2.1. Методические указания

Построение векторной диаграммы напряжений и токов начинаем с построения равностороннего треугольника линейных напряжений, задаваясь масштабом напряжения  $m_{II}$ .

масштабом напряжения  $m_U$ . Для нагрузки, соединенной звездой, в том же масштабе наносим векторы фазных напряжений.

На эту же диаграмму с учетом фазового сдвига наносим фазные токи. При этом для схем. 1.11 - 1.16 должно выполняться условие:

$$\vec{I}_A + \vec{I}_B + \vec{I}_C = 0 \tag{1.1}$$

Для схем рис. 1.17 – 1.25:

$$\vec{I}_A + \vec{I}_B + \vec{I}_C = \vec{I}_D \,. \tag{1.2}$$

а для схем 1.26 - 1.35:

$$\begin{split} \vec{I}_{AB} - \vec{I}_{CA} &= \vec{I}_{A} \\ \vec{I}_{BC} - \vec{I}_{AB} &= \vec{I}_{B} \\ \vec{I}_{CA} - \vec{I}_{BC} &= \vec{I}_{C} \end{split} \tag{1.3}$$

# 1.3. Задача 3

Трехфазный трансформатор: с номинальной мощностью  $S_H$  ; высшим линейным напряжением  $U_{1_H}$ ; низшим линейным напряженией  $U_{2_H}$ ; с мощностью потерь холостого хода  $P_\chi$ ; с напряжение короткого замыкания  $U_\kappa$ ; с мощностью потерь короткого замыкания  $P_\kappa$ ; и схемой соединения обмоток «звезда — звезда».

Определить:

- 1) фазные напряжения первичной и вторичной обмоток при холостом ходе;
  - 2) коэффициент трансформации;
  - 3) номинальные токи, в обмотках трансформатора;
- 4) активное и реактивное сопротивление фазы первичной и вторичной обмоток;
- 5) КПД трансформатора при  $\cos \varphi = 0.8$  и  $\cos \varphi = 1$  и коэффициенте загрузки  $\beta = 0.5$ .
- 6) Начертить эквивалентную схему трансформатора. Исходные данные в табл. 1.4.

# 1.3.1. Методические указания

При определении параметров обмоток считать:

$$r_1 = r_2' = r_{\kappa} / 2$$
 (1.4)  
 $x_1 = x_2' = x_{\kappa} / 2$  (1.5)

$$x_1 = x_2' = x_{\kappa}/2 \tag{1.5}$$

Ток холостого  $I_{D}\,$  считать равным:

$$I_D = 0.07I_{1u} ag{1.6}$$

Таблица 1.4.

| № п/п | S <sup>H</sup> ,KBA | U <sup>1H</sup> ,KB | $U^{2H}$ , $KB$ | $P^{x},Bm$ | $P^{\kappa},Bm$ | <i>Uκ</i> %  |
|-------|---------------------|---------------------|-----------------|------------|-----------------|--------------|
| 1.    | 5                   | 6                   | 400             | 60         | 600             | 5            |
| 2.    | 5                   | 6                   | 400             | 60         | 800             | 5 <b>,</b> 5 |
| 3.    | <b>10</b>           | 6                   | 400             | 60         | 1300            |              |
|       |                     | 10                  |                 |            |                 | 5,5          |
| 4.    | 10                  |                     | 400             | 100        | 2000            | 4,5          |
| 5.    | 10                  | 6                   | 400             | ПО         | 1970            | 5,5          |
| 6.    | 25                  | 6                   | 400             | 140        | 2700            | 5            |
| 7.    | 25                  | 10                  | 400             | 140        | 3700            | 4,5          |
| 8.    | 25                  | 10                  | 400             | 160        | 3600            | 5            |
| 9.    | 40                  | 6                   | 400             | 160        | <b>5400</b>     | 5,5          |
| 10.   | 40                  | 10                  | 400             | 180        | <b>7500</b>     | 4,5          |
| 11.   | 7                   | 4                   | 400             | 180        | 600             | 5            |
| 12.   | 7                   | 4                   | 400             | 220        | 800             | 5,5          |
| 13.   | 8                   | 6                   | 400             | 220        | 1300            | 5            |
| 14.   | 8                   | 6                   | 400             | 200        | 3000            | 4,5          |
| 15.   | 15                  | 10                  | 400             | 200        | 1970            | 5,5          |
| 16.   | 15                  | 10                  | 400             | 250        | 2700            | 5            |
| 17.   | 15                  | 10                  | 400             | 250        | 3700            | 4,5          |
|       | 30                  | 15                  | 400             | 300        | 3600            | 5            |
| 19.   | 30                  | 15                  | 400             | 300        | 5400            | 5,5          |
| 20.   | 30                  | 15                  | 400             | 100        | 7500            | 4,5          |
| 21.   | 35                  | 12                  | 400             | 100        | 600             | 5            |
| 22.   | 35                  | 12                  | 400             | ПО         | 800             | 5,5          |
| 23.   | 35                  | 12                  | 400             | ПО         | 1300            | 5            |
| 24.   | 7                   | 4                   | 400             | 140        | 2000            | 4,5          |
| 25.   | 7                   | 4                   | 400             | 140        | 1970            | 5,5          |

## 2. РАСЧЕТ МОЩНОСТИ И ВЫБОР ДВИГАТЕЛЯ ЭЛЕКТРОПРИВОДА

### 2.1. Задание

- 1) Для заданного группового варианта (табл. 2.1) и индивидуального варианта (табл. 2.2) начертить в масштабе нагрузочную диаграмму двигателя, рассчитать мощность, выбрать тип двигателя для режима с длительной переменно-периодической нагрузкой (табл. 2.3).
- 2) Для заданного группового варианта (табл. 2.4) и индивидуального варианта (табл. 2.5) начертить в масштабе нагрузочную диаграмму двигателя рассчитать мощность, выбрать тип двигателя для повторно-кратковременного режима работы (табл. 2.6).
- 3) Выбранные двигатели проверить по перегрузочной способности и условиям пуска.
- 4) Построить естественную механическую характеристику двигателя п. 1 по его паспортным данным.

Таблица 2.1

| № группы  | 1    | 2    | 3   | 4    |
|-----------|------|------|-----|------|
| п, об/мин | 1400 | 2800 | 920 | 2400 |

Таблица 2.2

|       |     |     | Mi, H | M   |     |    |    | ti, c |    |    |
|-------|-----|-----|-------|-----|-----|----|----|-------|----|----|
| Вари- | 1   | 2   | 3     | 4   | 5   | 1  | 2  | 3     | 4  | 5  |
| ант   |     |     |       |     |     |    |    |       |    |    |
| 1     | 280 | 460 | 180   | 300 | 200 | 10 | 20 | 25    | 18 | 5  |
| 2     | 160 | 920 | 380   | 200 | 100 | 5  | 15 | 18    | 12 | 8  |
| 3     | 150 | 205 | 60    | 280 | ПО  | 6  | 8  | 15    | 18 | 10 |
| 4     | 80  | 100 | 40    | 60  | 20  | 5  | 6  | 14    | 11 | 7  |
| 5     | 210 | 500 | 460   | 180 | 60  | 4  | 5  | 15    | 6  | 10 |
| 6     | 410 | 580 | 160   | 200 | 100 | 18 | 12 | 18    | 26 | 10 |
| 7     | 160 | 135 | 100   | 90  | 140 | 12 | 18 | 24    | 18 | 8  |
| 8     | 140 | 150 | 60    | 105 | 130 | 15 | 26 | 12    | 10 | 11 |
| 9     | 200 | 370 | 70    | 80  | 80  | 15 | 14 | 12    | 6  | 14 |
| 10    | 240 | 100 | 360   | 120 | 100 | 10 | 15 | 16    | 24 | 15 |
| 11    | 180 | 240 | 160   | 100 | 270 | 15 | 18 | 16    | 14 | 10 |
| 12    | 40  | 180 | 150   | 100 | 60  | 10 | 16 | 20    | 16 | 12 |
| 13    | 310 | 506 | 410   | 380 | 200 | 5  | 12 | 10    | 14 | 6  |
| 14    | 100 | 210 | 60    | 160 | 100 | 14 | 8  | 16    | 5  | 4  |
| 15    | 280 | 410 | 300   | 250 | 120 | 10 | 15 | 12    | 10 | 12 |

# Продолжение таблицы 2.2.

|         |     |     | Mi, H | M   |     | ti,c |    |    |    |    |  |
|---------|-----|-----|-------|-----|-----|------|----|----|----|----|--|
| Вариант | 1   | 2   | 3     | 4   | 5   | 1    | 2  | 3  | 4  | 5  |  |
| 16      | 180 | 260 | 180   | 100 | 50  | 5    | 10 | 6  | 8  | 7  |  |
| 17      | 240 | 100 | 320   | 140 | 200 | 10   | 15 | 8  | 7  | 6  |  |
| 18      | 200 | 350 | 150   | 210 | 160 | 20   | 24 | 15 | 16 | 10 |  |
| 19      | 300 | 380 | 160   | 180 | 270 | 8    | 12 | 17 | 14 | 10 |  |
| 20      | 200 | 350 | 150   | 260 | 180 | 12   | 16 | 20 | 8  | 12 |  |
| 21      | 30  | 410 | 200   | 180 | 250 | 14   | 15 | 18 | 6  | 20 |  |
| 22      | 260 | 140 | 350   | 140 | 210 | 18   | 24 | 12 | 16 | 8  |  |
| 23      | 60  | 100 | 400   | 50  | 40  | 12   | 25 | 5  | 16 | 26 |  |
| 24      | 380 | 210 | 500   | 410 | 80  | 10   | 15 | 6  | 8  | 10 |  |
| 25      | 170 | 240 | 370   | 420 | 100 | 8    | 16 | 10 | 15 | 6  |  |
|         |     |     |       |     |     |      |    |    |    |    |  |

Таблица 2.3.

| Тип<br>двигателей | $P_{_{\!\scriptscriptstyle H}},$ | $n_{_{\!\scriptscriptstyle H}},$ | $U_{\scriptscriptstyle{\scriptscriptstyle H}}$ , | $\eta_{_{\scriptscriptstyle H}},$ | $\cos \varphi_{_{\scriptscriptstyle H}}$ | $\lambda = \frac{M_n}{M_n}$ | $\lambda_{\kappa} = \frac{M_{\kappa}}{M}$ | $\lambda_I = \frac{I_n}{r}$ |
|-------------------|----------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------|
| двигателен        | кВт                              | об,м                             | B                                                | %                                 |                                          | $M_{\mu}$                   | $M_n$                                     | $I_H$                       |
| AИP90L4           | 2,2                              | 1500                             | 380                                              | 83                                | 0,84                                     | 1,9                         | 2,5                                       | 7                           |
| АИР100L4У3        | 4                                | 1500                             | 380                                              | 84,5                              | 0,86                                     | 1,8                         | 2,5                                       | 7                           |
| A132S4            | 7,5                              | 1455                             | 380                                              | 86                                | 0,86                                     | 2                           | 2,8                                       | 7                           |
| A132M4            | 11                               | 1455                             | 380                                              | 87,5                              | 0,87                                     | 1,9                         | 2,4                                       | 7                           |
| 4AM160M8/6/4      | 10                               | 965                              | 380                                              | 87                                | 0,86                                     | 1,2                         | 1,8                                       | 7                           |
| 4AM160M8          | 10                               | 725                              | 380                                              | 87                                | 0,8                                      | 1,2                         | 1,7                                       | 7                           |
| 4AM160M6/4        | 13                               | 1450                             | 380                                              | 89,5                              | 0,88                                     | 1,3                         | 2                                         | 7                           |
| 4AMC160M6E        | 13                               | 965                              | 380                                              | 89,5                              | 0,86                                     | 1,2                         | 1,8                                       | 7                           |
| 4AM160M8/6        | 13                               | 725                              | 380                                              | 88                                | 0,82                                     | 1,1                         | 1,7                                       | 7                           |
| АИС160L2          | 18                               | 2900                             | 380                                              | 88                                | 0,89                                     | 1,2                         | 2,2                                       | 7                           |
| 2ОМШМН            | 18                               | 1450                             | 380                                              | 89,5                              | 0,88                                     | 1,3                         | 2                                         | 7                           |
| A180M6            | 18                               | 965                              | 380                                              | 89                                | 0,87                                     | 1,2                         | 1,8                                       | 7                           |
| A200M8            | 18                               | 725                              | 380                                              | 87,5                              | 0,82                                     | 1,1                         | 1,7                                       | 7                           |
| 4AMH160M4         | 20                               | 1460                             | 380                                              | 88                                | 0,82                                     | 1,9                         | 2,8                                       | 7                           |
| 4AMH160S2         | 22                               | 2900                             | 380                                              | 89                                | 0,88                                     | 1,1                         | 2,2                                       | 7                           |
| 4AMH160M4         | 22                               | 1450                             | 380                                              | 90                                | 0,87                                     | 1,2                         | 2                                         | 7                           |
| 4AMH180M4         | 22                               | 965                              | 380                                              | 89,5                              | 0,87                                     | 1,2                         | 1,8                                       | 7                           |
| 5A225M8K          | 22                               | 725                              | 380                                              | 89                                | 0,82                                     | 1,1                         | 1,7                                       | 7                           |
| 4AMH160M2         | 28                               | 1460                             | 380                                              | 89                                | 0,82                                     | 1,9                         | 2,8                                       | 7                           |
| 4AMC160M2         | 30                               | 2900                             | 380                                              | 90                                | 0,9                                      | 1,1                         | 2,2                                       | 7                           |
| 4AMH180MS4        | 30                               | 1450                             | 380                                              | 90,5                              | 0,88                                     | 1,2                         | 2                                         | 7                           |

# Продолжение таблицы 2.3

| Тип<br>двигателя | Рн | n <sup>H</sup> | Ин  | ηĦ       | cosφ <sup>H</sup> | λ   | $\lambda_{_{k}}$ | $\lambda_{_1}$ |
|------------------|----|----------------|-----|----------|-------------------|-----|------------------|----------------|
| A200L6           | 30 | 970            | 380 | 90       | 0,82              | 1,1 | 1,8              | 7              |
| A225M8           | 30 | 730            | 380 | 90       | 0,88              | 1,1 | 1,7              | 7              |
| A200L2           | 45 | 2940           | 380 | 90,<br>5 | 0,9               | 1,1 | 2,2              | 7              |
| A200L4           | 45 | 1470           | 380 | 90       | 0,88              | 1,9 | 2,6              | 7              |
| AB250S4          | 45 | 1460           | 380 | 91       | 0,89              | 1Д  | 2                | 7              |
| AB250S6          | 45 | 1000           | 380 | 91       | 0,89              | 1Д  | 1,8              | 7              |
| AB250S8          | 45 | 750            | 380 | 92,<br>5 | 0,87              | 1,1 | 1,7              | 7              |
| A225M2           | 55 | 2955           | 380 | 91       | 0,9               | 1,1 | 2,2              | 7              |
| A225M4           | 55 | 1470           | 380 | 90,<br>5 | 0,88              | 1,9 | 2,6              | 7              |
| A225M6           | 55 | 1000           | 380 | 92       | 0,89              | 1,1 | 1,8              | 7              |
| AB280S8          | 55 | 750            | 380 | 92       | 0,9               | 1Д  | 1,7              | 7              |

Таблица 2.4

|           | 1   | 2   | 3   | 4    |
|-----------|-----|-----|-----|------|
| N группы  |     |     |     |      |
| п, об/мин | 100 | 860 | 670 | 1000 |

Таблица 2.5

| Вариант |     | Mi, | Нм  |     |   | ti, c |    |    |    |     |
|---------|-----|-----|-----|-----|---|-------|----|----|----|-----|
|         | 1   | 2   | 3   | 4   | 5 | 1     | 2  | 3  | 4  | 5   |
| 1       | 180 | 280 | 100 | 60  | 0 | 12    | 8  | 6  | 7  | 80  |
| 2       | 90  | 60  | 140 | 40  | 0 | 10    | 10 | 8  | 5  | 70  |
| 3       | 140 | 60  | 160 | 40  | 0 | 16    | 10 | 14 | 8  | 120 |
| 4       | 300 | 400 | 200 | 50  | 0 | 5     | 5  | 15 | 8  | 85  |
| 5       | 50  | 20  | 10  | 30  | 0 | 8     | 16 | 20 | 4  | 100 |
| 6       | 300 | 100 | 350 | 100 | 0 | 10    | 20 | 8  | 6  | 200 |
| 7       | 250 | 140 | 180 | 50  | 0 | 12    | 16 | 20 | 20 | 180 |
| 8       | 100 | 160 | 80  | 20  | 0 | 15    | 24 | 10 | 7  | 200 |
| 9       | 270 | 360 | 180 | 120 | 0 | 10    | 20 | 10 | 10 | 160 |
| 10      | 200 | 460 | 180 | 100 | 0 | 20    | 10 | 15 | 10 | 140 |
| 11      | 260 | 400 | 170 | 80  | 0 | 10    | 5  | 10 | 12 | 160 |
| 12      | 120 | 210 | 175 | 50  | 0 | 10    | 15 | 8  | 6  | 180 |
| 13      | 50  | 260 | 300 | 40  | 0 | 10    | 15 | 10 | 12 | 200 |
| 14      | 40  | 160 | 30  | 70  | 0 | 5     | 8  | 15 | 10 | 120 |
| 15      | 200 | 130 | 350 | 120 | 0 | 10    | 15 | 5  | 16 | 130 |
| 16      | 370 | 210 | 160 | 70  | 0 | 20    | 10 | 18 | 6  | 140 |
| 17      | 240 | 320 | 120 | 40  | 0 | 8     | 6  | 14 | 11 | 115 |
| 18      | 230 | 380 | 115 | 30  | 0 | 10    | 17 | 23 | 8  | 140 |
| 19      | 270 | 410 | 120 | 80  | 0 | 8     | 16 | 20 | 7  | 210 |
| 20      | 245 | 420 | 100 | 40  | 0 | 20    | 5  | 6  | 14 | 170 |
| 21      | 60  | 140 | 80  | 72  | 0 | 8     | 6  | 14 | 15 | 160 |
| 22      | 80  | 115 | 80  | 40  | 0 | 20    | 15 | 6  | 10 | ПО  |
| 23      | 50  | 160 | 260 | 100 | 0 | 10    | 8  | 14 | 8  | 160 |
| 24      | 100 | 160 | 80  | 100 | 0 | 6     | 4  | 10 | 7  | 85  |
| 25      | 85  | 230 | 160 | 70  | 0 | 14    | 8  | 6  | 14 | 100 |
| 26      | 80  | 200 | 120 | 60  | 0 | 10    | 12 | 10 | 18 | 120 |

Таблица 2.6.

| Тип<br>двигателя | Рн,<br>кВт | n <sub>н</sub> ,<br>Об/м | Uн,<br>В | $\eta_{\scriptscriptstyle \mathrm{H}}$ | $cos\phi_{\rm H}$ | Мк<br>λк=<br>Мн | Mn<br>λn=<br>Мн | In<br>λi —<br>Ін | ПВ,<br>% |
|------------------|------------|--------------------------|----------|----------------------------------------|-------------------|-----------------|-----------------|------------------|----------|
| АИРС90LB8        | 1,6        | 750                      | 380      | 0,8                                    | 0,69              | 2,8             | 2,8             | 5,5              | 25       |
| АИРУ112МА8       | 2,2        | 750                      | 380      | 0,8                                    | 0,7               | 2,8             | 2,8             | 5,5              | 25       |
| АИС132S6         | 3          | 950                      | 380      | 0,76                                   | 0,74              | 2,8             | 2,8             | 5,5              | 25       |
| АИС132МВ6        | 5,5        | 950                      | 380      | 0,7                                    | 0,75              | 3,0             | 3,9             | 5,5              | 25       |
| АМУ160М6         | 7,5        | 1000                     | 380      | 0,72                                   | 0,79              | 2,9             | 2,8             | 5,5              | 25       |
| AMУ160L6         | 11         | 1000                     | 380      | 0,81                                   | 0,8               | 3,1             | 2,8             | 5,5              | 25       |
| 3BP180M8         | 15         | 900                      | 380      | 0,8                                    | 0,79              | 3,1             | 2,8             | 5,5              | 25       |
| АМУ225М8         | 22         | 750                      | 380      | 0,8                                    | 0,76              | 3,3             | 3               | 5,5              | 25       |
| АМУ250М8         | 30         | 750                      | 380      | 0,8                                    | 0,75              | 3,4             | 3,1             | 5,5              | 25       |
| АМУ132S6У2       | 3          | 1000                     | 380      | 0,81                                   | 0,79              | 2,6             | 2,5             | 5,5              | 40       |
| АМУМВ6У2         | 5,5        | 1000                     | 380      | 0,85                                   | 0,8               | 3,1             | 2,9             | 5,5              | 40       |
| АМУ160М6         | 7,5        | 1000                     | 380      | 0,8                                    | 0,83              | 2,8             | 2,9             | 5,5              | 40       |
| AMY180L6         | 15         | 1000                     | 380      | 0,8                                    | 0,81              | 3               | 2,8             | 5,5              | 40       |
| АМУ200МВ6        | 22         | 1000                     | 380      | 0,81                                   | 0,86              | 3,1             | 2,8             | 5,5              | 40       |
| АМУ220L8         | 15         | 750                      | 380      | 0,76                                   | 0,73              | 3,4             | 3,1             | 5,5              | 40       |
| 3B200L8          | 22         | 750                      | 380      | 0,75                                   | 0,8               | 3,3             | 2,9             | 5,5              | 40       |
| 3B225M8          | 30         | 750                      | 380      | 0,74                                   | 0,75              | 3,5             | 3,1             | 5,5              | 40       |

# 2.1.1. Методические указания

1. Эквивалентный момент определяется по формуле:

$$M_3 = \sqrt{\frac{\sum M_i^2 \cdot t_i}{\sum_i t_i}} = \sqrt{\frac{M_1^2 \cdot t_1 + M_2^2 \cdot t_2 + \dots}{t_1 + t_2 + \dots}} -$$

для двигателя с длительной переменно-периодической нагрузкой;

$$M_{3} = \sqrt{\frac{\sum M_{i}^{2} \cdot t_{i}}{t_{p} + \alpha \cdot t_{0}}} = \sqrt{\frac{M_{1}^{2} \cdot t_{1} + M_{2}^{2} \cdot t_{2} + \dots}{t_{p} + \alpha \cdot t_{0}}} -$$

для двигателя с повторно-кратковременной нагрузкой.

#### Здесь:

M1, M2,..., Mi – текущие значения момента на валу двигателя; t1, t2,...,ti – промежутки времени, соответствующие моментам; tp – время работы двигателя;

t<sub>0</sub> – пауза между периодами работы;

 $\alpha$  — коэффициент, учитывающий ухудшение теплоотдачи двигателя во время паузы,  $\alpha = 0.25 - 0.5$ .

2. Эквивалентную мощность двигателя рассчитываем по формуле

$$P_{3} = \frac{M_{30}}{9550} [\kappa BT] -$$

для двигателя с длительной переменно-периодической нагрузкой.

Для двигателя с повторно-кратковременной нагрузкой надо прежде рассчитать продолжительность включения ПВ%, привести момент к стандартной продолжительности включения, а затем определить Рэ, т.е.

$$\Pi B\%_{pacu} = \frac{t_p}{t_p + t_0} \cdot 100\%$$

Стандартные значения ПВ%станд. = 25, 40, 60%.

$$M_{crah, I} = M_3 \cdot \sqrt{\frac{\Pi B\%_{pacy.}}{\Pi B\%_{crah, I}}}; P_3 = \frac{M_{crah, I}}{9550} [\kappa BT];$$

- 3. Двигатель работает по табл.2.3 и 2.6 соответственно из условия:  $PH \ge P_{\mathfrak{I}}$ .
- 4. Проверка двигателя по условиям перегрузки и условиям пуска. По паспортным данным табл.2.3 и 2.6. определяем:

$$M_{_{\rm H}}=\frac{\mathrm{P}_{_{\rm H}}\cdot9550}{n_{_{\rm H}}}[\mathrm{HM}]$$

$$M_{\text{myck}} = \lambda_n \cdot M_{\text{H}}[H_M]$$

$$\mathbf{M}_{\max} = \mathbf{\lambda}_{\kappa} \cdot \mathbf{M}_{\mathsf{H}} [\mathsf{H} \mathsf{M}]$$

Двигатель удовлетворяет условиям перегрузки, если:

Мнаиб.  $\leq$  0,85 Mmax,

где Мнаиб. – наибольший момент на валу двигателя из нагрузочной диаграммы.

Двигатель удовлетворяет условиям пуска, если:

Мнач. 
$$\leq 0.85 \, \text{Mmax}$$
,

где Мнач. – начальный момент двигателя из нагрузочной диаграммы.

Если условия перегрузки или условия пуска не выполняются, надо завысить мощность двигателя на одну ступень и повторить расчет.

- 5. Механическая характеристика n=f(M) рис.2.1 строится по точкам:
- 1)  $n_{xx} = n_0$  об/мин; Mxx = 0
- 2) n<sub>н</sub> об/мин: Мн [ Нм ]
- 3) n<sub>кр</sub>; Мкр;
- 4)  $n_{\text{пуск}}$ ;  $M_{\text{пуск}}$ ;  $n_{\text{пуск}} = 0$ .

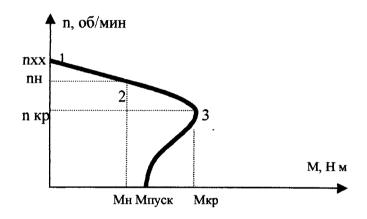



Рис. 2.1

$$n_{xx} = n_0 = \frac{60 \cdot f}{P},$$

где P – число пар полюсов;  $f = 50 \, \Gamma$ ц.

Например, для двигателя A200L6 - P = 6/2 = 3.

$$n_{\kappa p} = n_0 \cdot (1 - S_{\kappa p}),$$

Мн,  $n_{\rm H}$  – из паспортных данных;

Мпуск, Мкр – расчетное (см. выше);

где

$$S_{\kappa p} = S_{H} \cdot \left[ \lambda \kappa p + \sqrt{\lambda \kappa p - 1} \right]$$

критическое скольжение.

# 3. РАСЧЕТ СИЛОВОЙ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ НА СТРОИТЕЛЬНОМ ОБЪЕКТЕ

### ЭЛ. Задание

- 1) Для заданного группового варианта (табл.3Л) и индивидуального варианта (табл.3.2) начертить план строительной площадки, произвести расстановки силовых распределительных щитов, двигателей и рассчитать силовую распределительную сеть.
- 2) Рассчитать защиту к двигателям и щитам с помощью плавких предохранителей.
  - 3) Проверить силовую распределительную сеть по потере напряжения.

Таблица 3.1

| N<br>группы | cos φ <sub>μ</sub> | η <sub>н</sub> , % | $Ki = \frac{I_{nyck}}{I_{H}}$ |
|-------------|--------------------|--------------------|-------------------------------|
| 1           | 0,88               | 90                 | 7                             |
| 2           | 0,9                | 91                 | 5                             |
| 3           | 0,94               | 94                 | 6                             |
| 4           | 0,94<br>0,96       | 95                 | 4,5                           |

Таблица 3.2

| Вари- |     | Мощн | ности | Размеры |     |      |     |                |
|-------|-----|------|-------|---------|-----|------|-----|----------------|
| ант   | кВт |      |       |         |     |      |     | строительного  |
|       | 1   | 2    | 3     | 4       | 5   | 6    | 7   | объекта, м х м |
| 1     | 1,5 | 45   | 37    | 1,1     | 3,0 | 3,0  | 11  | 40x20          |
| 2     | 11  | 3,0  | 2,2   | 45      | 2,2 | 3,0  | 30  | 40x40          |
| 3     | 45  | 3,0  | 4,0   | 2,2     | 11  | 1,5  | 7,5 | 40x50          |
| 4     | 1,1 | 3,0  | 22    | 30      | 4,0 | 5,5  | 37  | 30x70          |
| 5     | 4,0 | 30   | 5,5   | 3,7     | 7,5 | 45   | 11  | 70x80          |
| 6     | 5,5 | 7,5  | 37    | 45      | 11  | 55   | 1,1 | 70x40          |
| 7     | 7,5 | 45   | 11    | 55      | 1Д  | 15   | 1,5 | 70x50          |
| 00    | 11  | 55   | 1,1   | 15      | 1,5 | 17   | 2,2 | 70x60          |
| 9     | И   | 1,1  | 55    | 17      | 1,5 | 1,5  | 17  | 23x33          |
| 10    | 4,0 | 45   | 5,5   | 55      | 7,5 | 17   | 11  | 27x37          |
| 11    | 30  | 37   | 4,0   | 55      | 5,5 | 17   | 7,5 | 29x39          |
| 12    | 4,0 | 45   | 5,5   | 15      | 7,5 | 18,5 | 11  | 31x41          |
| 13    | 5,5 | 55   | 11    | 17      | 1,1 | 18,5 | 1,5 | 33x43          |

| 14 | 15  | 11   | 17   | 7,5  | 1,1 | 18,5 | 1,5 | 35x45 |
|----|-----|------|------|------|-----|------|-----|-------|
| 15 | 11  | 17   | 1,1  | 22   | 1,5 | 37   | 2,2 | 37x47 |
| 16 | 30  | 2,2  | 45   | 30   | 1,1 | 18,5 | 1,5 | 22x44 |
| 17 | 1,5 | 22   | 2,2  | 30   | 3,0 | 45   | 4,0 | 24x48 |
| 18 | 2,2 | 3,0  | 45   | 37   | 4,0 | 55   | 5,5 | 26x52 |
| 19 | 3,0 | 45   | 4,0  | 55   | 5,5 | 15   | 7,5 | 22x40 |
| 20 | 4,0 | 45   | 5,5  | 15   | 7,5 | 17   | 11  | 18x36 |
| 21 | 17  | 11   | 18,5 | 1,1  | 5,5 | 15   | 7,5 | 18x32 |
| 22 | 7,5 | 17   | 11   | 18,5 | 1,1 | 22   | 1,5 | 28x28 |
| 23 | 11  | 18,5 | 1,1  | 22   | 1,5 | 30   | 2,2 | 32x32 |
| 24 | 1,1 | 22   | 1,5  | 30   | 2,2 | 37   | 3,0 | 20x35 |
| 25 | 1,5 | 30   | 2,2  | 37   | 3,0 | 45   | 4,0 | 17x30 |

- 4) Результаты расчета представить в виде расчетной схемы.
- 5) Для каждого варианта принять напряжение питающей сети 380 В, частота питающего напряжения  $f=50\Gamma$ ц..

#### Примечание:

- распределительную сеть от трансформаторной подстанции (ТП) до распределительных щитов (РП) выполнить кабелем  $ABB\Gamma$ , проложенным открыто в канале или по стенам.
- разводку от силовых щитов  $P\Pi$  к двигателям выполнить проводом марки  $A\Pi B$ , проложенным в трубах.
- расстояние от  $T\Pi$  до ближайшего  $P\Pi$  принять равным 100 м для всех вариантов.
- длины проводов от двигателя к щитам и между щитами принять по плану строительного объекта.

### 3.1.1. Методические указания

На рис. 3.1 изображен план строительного объекта в масштабе с указанием расположения двигателей для нулевого варианта. Цифра [3/40] - верхняя цифра - номер двигателя, нижняя - его мощность в кВт.

1. Выбор сечения проводов, соединяющих двигатели с распределительным щитом осуществляется по формуле:

$$I_{Hi} = \frac{P_{Hi}}{\sqrt{3} \cdot U_{H} \cdot \cos \varphi_{H} \cdot \eta_{H}}$$

где Рш - номинальная мощность і-го двигателя (Вт);

**UH** - номинальное напряжение, согласно исходных данных;

 $\eta^{\rm H}$  ,  $\cos \phi^{\rm H}$  - к п д и коэффициент мощности соответственно - согласно

### групповому варианту.

Сечение провода марки АПВ выбираем по таблице 3.3 из условия Ідоп. $i \ge Ihi$ .

2. Расчет кабеля, соединяющего распределительные щиты.

Рабочий ток в линии, соединяющей распределительные щиты, определяем по формуле:

$$I_{pa6.P\Pi1-P\Pi2} = K_{OД} \cdot \sum_{i} (K_3 \cdot I_{Hi}),$$

где  $\sum$  - учитывает нагрузку первого распределительного щита;

Код — коэффициент одновременности работы двигателей, учитывающий несовпадение максимумов потребителей), принять Kog = 0,7-0,9;

 $K_3$  — коэффициент, учитывающий загрузку двигателей. Принять  $K_3 = 0.9$  для самого мощного двигателя, а для остальных  $K_3 = 1$ .

Сечение провода выбираем по таблице 3.3.

Таблица 3.3

| Сечение | Попустиция плитон     | HILO TOKOPIJO HOPPYNYH P A |
|---------|-----------------------|----------------------------|
|         |                       | ные токовые нагрузки в А   |
| жилы,   | Провода с резиновой   | Кабели с резиновой или     |
| MM      | или ПВХ изоляцией с   | пластмассовой изоля-       |
|         | алюминиевыми жилами   | цией с алюминиевыми        |
|         | (проложенные открыто) | жилами, трехжильные        |
|         |                       | (проложенные открыто)      |
| 2       | 21                    | 18                         |
| 2,5     | 24                    | 17                         |
| 3       | 27                    | 22                         |
| 4       | 32                    | 28                         |
| 5       | 36                    | 30                         |
| 6       | 39                    | 32                         |
| 8       | 46                    | 40                         |
| 10      | 60                    | 47                         |
| 16      | 75                    | 60                         |
| 25      | 105                   | 75                         |
| 35      | 130                   | 90                         |
| 50      | 165                   | ПО                         |
| 70      | 210                   | 140                        |
| 95      | 255                   | 170                        |
| 120     | 295                   | 200                        |
| 150     | 340                   | 235                        |
| 185     | 390                   | 270                        |
| 240     | 465                   | _                          |

3. Расчет сечения кабеля, соединяющего РП-2 и ТП (трансформаторную подстанцию). Эта линия несет нагрузку двух силовых щитов РП-1 и РП-2. Рабочий ток в линии определим по формуле:

$$I_{\text{раб.РП2-TП}} = I_{\text{раб.РП1-РП2}} + K_{\text{од}} \cdot \sum (K_3 \cdot \text{Іні}),$$

где Код  $\sum$ (Кз Іні) — слагаемое определяет нагрузку второго распределительного щита РП-2.

4. Выбор плавкой вставки предохранителей, защищающих двигатель от перегрузки, а провода, питающие двигатель, от токов короткого замыкания (рис.3.2).

Для подбора плавкой вставки предохранителя определяем максимальный ток в линии — это пусковой ток двигателя

где Кі –кратность пускового тока по групповому варианту.

Для того, чтобы плавкая вставка не расплавлялась за время пуска двигателя, необходимо выполнение условия:

IBCT. 
$$i \ge 0.4$$
Imax.  $i$ 

Предохранитель подбираем по таблице 3.4.

Таблина 3.4

| Тип     | Номинальный ток плавкой вставки, |
|---------|----------------------------------|
|         | A                                |
| ППНИ-33 | 2, 4, 6, 8, 10, 12, 16, 20       |
| ппни-33 | 25, 32, 40, 50                   |
| ППНИ-33 | 63, 80, 100                      |
| ппни-33 | 125, 160                         |
| ШШИ-35  | 100, 125, 160, 200, 250          |
| ППНИ-37 | 200, 250, 315, 355, 400          |
| ППНИ-39 | 315, 355, 400, 500, 630          |

Выбранная таким образом плавкая вставка должна обеспечить отключение участка в случае короткого замыкания и перегрузок, но при этом необходимо выполнение условия:

Если это неравенство не соблюдено, надо увеличить сечение до необходимых результатов, при этом ток плавкой вставки сохраняется прежним.

5. Плавкая вставка линии, соединяющей распределительные щиты, выбирается по максимальному току в линии, который вычисляется:

$$Imax.pп1-pп2 = Koд \cdot \sum (K₃ \cdot Iнi) + Iпуск.наиб,$$

где Іпуск.наиб. – пусковой ток самого мощного двигателя, питающегося от РП-1

Для схемы рис. 3.1 это соотношение можно записать:

$$Imax.pn1-pn2 = Koд \cdot (Ih1 + Ih2 + Ih4) + Inyck.3$$

Выбор плавкой вставки производим по таблице 3.4 с выполнением условий:

6. Плавкая вставка линии, соединяющей РП-2 и ТП, выбирается по току:

Imax.pn2-тп = Imax.pn1-pn2 + Koд 
$$\cdot \sum_{i}$$
 (K3· Iнi),

где Код  $\cdot \sum (K3 \cdot Iнi)$  — токовая нагрузка РП-2.

Предохранитель выбираем по таблице 3.4 с соблюдением условий:

Imax.pп2-тп 
$$\geq \frac{\text{Imax.pп2-тп}}{2.5}$$
;

7. Проверка распределительной сети по допустимой потере напряжения. Допустимая потеря напряжения в силовой сети одной подстанции по

Допустимая потеря напряжения в силовой сети одной подстанции по ГОСТ составляет ±5%. Она состоит из потерь напряжения в линии, соединяющей ТП и РП-2, линии РП-1 — П-2 и потери напряжения самого мощного двигателя данной сети, т.е.

$$\Delta U\% = \Delta U\%$$
рп2-тп +  $\Delta U\%$  рп1-рп2 +  $\Delta U\%$ самого мощного двигателя  $\leq 5\%$ 

Потерю напряжения определяем по следующей схеме:

- определяем сопротивление жилы кабеля:

$$R = 1 (\gamma_{M} S)^{-1},$$

где 1 – длина соответствующей линии;

S – площадь сечения кабеля;

 $\gamma_{\rm M}$  – удельная проводимость меди,  $\gamma_{\rm M}$  = 54 м/Ом мм.

- потери линейного напряжения в линии:

$$\Delta U_{\pi} = \sqrt{3} \cdot R \cdot I_{\text{расч.линии}} \cdot \cos \varphi_{H},$$

где Ірасч.линии = I раб.

- относительная потеря напряжения на участке составляет:

$$\Delta U\% = \frac{\Delta U\pi}{U\pi} \cdot 100\%,$$

где Uл = 380 В, согласно заданию.

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Электротехника и электроника: Учеф. пособие для вузов/под ред.В.В. Кононенко.-Ростов н/Д: Феникс,2004, 2006.-747 с.
- 2. Немцов, М.В. Электротехника и электроника МЭИ, 2003.-596 с. Касаткин^А.С, Немцов М.В. Электротехника. - М.: Энергоиздат, 1983-440 с.
- 3. Глушков<sup>^</sup>Г.Н., Крабцберг М.И. Электропривод и электроснабжение строительных машин и предприятий стройиндустрии, М.<sup>^</sup> 1972.-321 с.
- 2. Инженерные сети и оборудование: Электротехника и электроснабжение в строительстве .'Учебно-методическое пособие. -УлГТУ? 1994.— 48 с.
- 3. А лиев, И. И., Колганова С.Г. Электротехнические материалы и изделия: Справочник-М.:РадиоСофт, 2005.-360 с.
  - 4. Алтев, И.О. Кабельные изделия: Справочник М.: Высш.школа, 2004.
  - 5. Номенклатурный каталог: Двигатели асинхронные 2004.-757 с.
  - 6. Каталог электротехнической продукции. 2006-336 с.

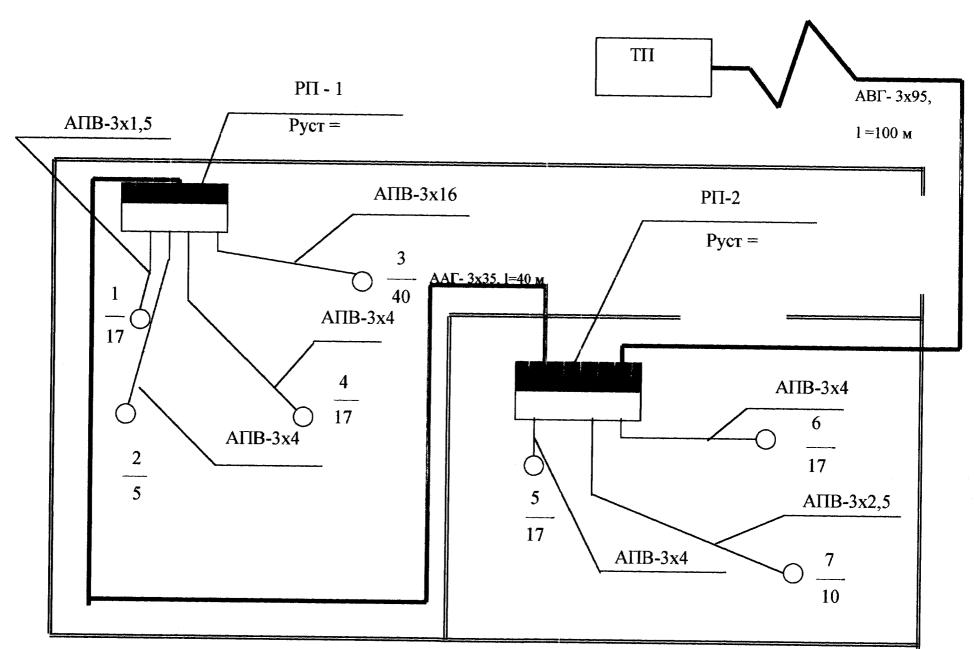



Рис. 3.1

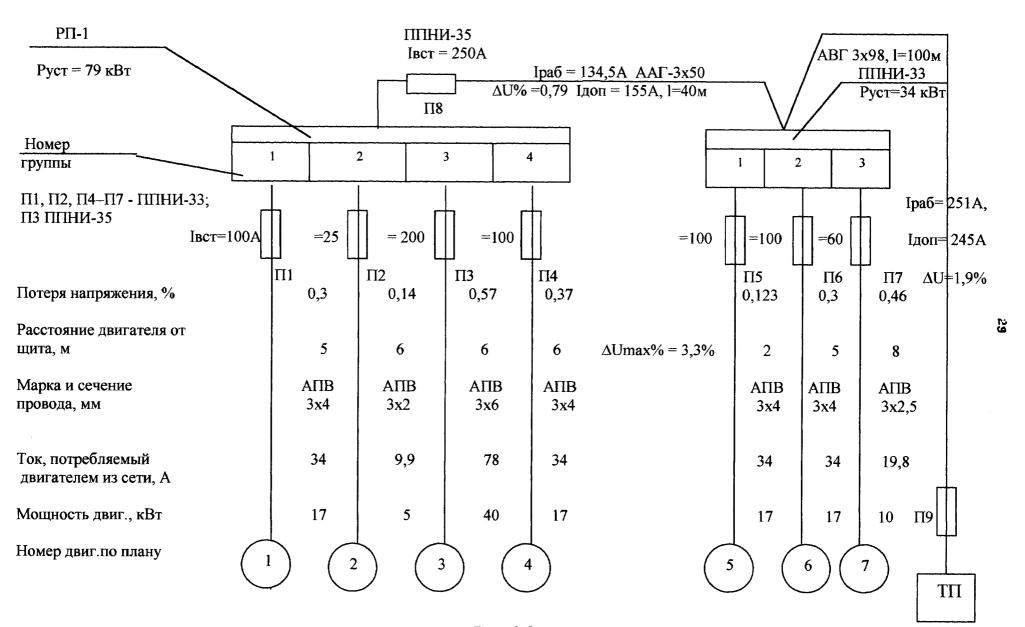



Рис. 3.2

#### Учебное излание

# ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОСНАБЖЕНИЕ В СТРОИТЕЛЬСТВЕ

Составитель МЕНЬШОВ Евгений Николаевич

Подписано в печать 29.09.2007. Формат 60х84/16. Бумага тип. № 1. Усл. печ. л. 1,86. Тираж 100 экз. Заказ 1270

Ульяновский государственный технический университет 432027, г. Ульяновск, ул. Сев. Венец, д. 32. Типография УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32.