Вариант 9

- 1. Система состоит из соосных горизонтальной оси (диаметр $d=10\ cm$) и сплошного диска (радиус $R=10\ cm$, масса $M=500\ c$). На ось намотан шнур, к которому привязан груз массой $m=400\ c$. Опускаясь равноускорено, груз прошел путь $s=2\ m$ за время $t=1,24\ c$. Определить массу оси m_o . Трение считать пренебрежимо малым. Ускорение свободного падения $g=9,815\ m/c^2$. [2 балла]
- 2. На горизонтальной платформе, имеющей форму диска радиусом R=4~m, находится человек массой $m=80~\kappa z$. Масса платформы $M=440~\kappa z$. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Человек идет вдоль ее окружности со скоростью $\upsilon=1,5~m/c$ относительно платформы. Угловая скорость платформы $\omega=0,2~pa\partial/c$. Определить на каком расстоянии от оси вращения находится человек. Трением пренебречь. [2 балла]
- 3. Точка совершает гармонические колебания по закону $x = A\cos(\omega t + \varphi)$. Амплитуда колебаний A = 5 cm, период T = 10 c. Найти максимальное ускорение a_{\max} точки. [2 балла]
- 4. При нормальных условиях найти плотность ρ двухкомпонентной газовой смеси, состоящей из азота и неона, если их массовые доли $w_1 = 0.15$ и $w_2 = 0.85$. [2 балла]
- 5. В сосуде объемом $V = 10 \, \pi$ при стандартных условиях находится аргон. Определить среднюю арифметическую скорость $\langle \upsilon \rangle$ его атомов. [2 балла]
- 6. Двухкомпонентная газовая смесь состоит из водяного пара и ксенона, имеющих объемы $V_1 = 2 \ \pi$ и $V_2 = 4 \ \pi$ соответственно. Найти ее удельную теплоемкость при постоянном объеме c_V . [2 балла]
- 7. При изохорном нагреве 2 *моль* азота давление p увеличивается в 2 pasa. Найти приращение энтропии ΔS . [2 балла]