ПРОГРАММА И КОНТРОЛЬНЫЕ РАБОТЫ ПО МАТАНАЛИЗУ. Для всех технических специальностей 1 СЕМЕСТР

РАСПРЕДЕЛЕНИЕ УЧЕБНОГО МАТЕРИАЛА ПО СЕМЕСТРАМ

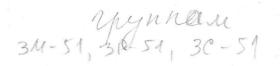
TIO CENTEC II ANI		
Семестр	Тема	№ контр. работы
	1. Функции, предел и непрерывность 2. Производная и дифференциал	1
1		
	3. Исследование функций	2
	4. Неопределенный интеграл	
	5. Определенный интеграл.	
	Несобственные интегралы	

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Д. Письменный Конспект лекций по высшей математике, ч.1, ч.2.

"АЙРИС ПРЕСС", М., 2003

2. Выгодский М.Я. Справочник по высшей математике. Наука, М. 2010


РАБОЧАЯ ПРОГРАММА

1. Функции, предел и непрерывность

- 1. Функции, способы ее задания и простейшие свойства.
- 2. Элементарные функции.
- 3. Понятие предела функции.
- 4.Понятие бесконечно малых и бесконечно больших величин.
- 5. Пределы суммы, разности, произведения и частного.
- 6.Первый замечательный предел.
- 7. Число е и второй замечательный предел.
- 10.Понятие непрерывность функции в точке и в интервале.
- 11. Точки разрыва функции и их классификация.

2.Производная и дифференциал

- 1. Производная, ее физический и геометрический смысл.
- 2. Производные суммы, разности, произведения и дроби.
- 3. Производные сложной функции.

- 4. Производные тригонометрических функций.
- 5. Производные логарифмической и показательной функций.
- 6. Производная степенной функции.
- 7. Производная функции, заданной параметрически.
- 8. Производные высших порядков.
- 10. Дифференциал функции и его геометрический смысл.

3.Исследование функций

- 1. Правило Лопиталя раскрытия неопределенностей. 7 типов неопределенностей.
- 2. Экстремум функции. Необходимое условие.
- 3. Исследование экстремума функции с помощью первой производной.
- 4.Выпуклость и вогнутость графика функции.
- 5. Точки перегиба и их нахождение.
- 6. Нахождение асимптот графика функции.

4. Неопределенный интеграл

- 1. Первообразная и неопределенный интеграл.
- 2. Простейшие свойства неопределенного интеграла.
- 3.Интегрирование по частям.
- 4.Замена переменной в неопределенном интеграле.
- 5.Интегрирование дробно-рациональных функций.
- 6.Интегрирование тригонометрических функций.
- 7. Интегрирование некоторых иррациональных функций.

5. Определенный интеграл. Несобственные интегралы

- 1. Интегральная сумма и определенный интеграл.
- 2. Простейшие свойства определенного интеграла.
- 3.Интеграл с переменным верхним пределом и его производная.
- 4. Формула Ньютона-Лейбница.
- 5.Интегрирование по частям и замена переменной в определенном интеграле.
- 6. Несобственные интегралы с бесконечными пределами интегрирования.
- 7. Несобственные интегралы от разрывных функций.
- 8.Вычисление площадей плоских фигур с помощью определенных интегралов.

2

ЗАДАЧИ КОНТРОЛЬНЫХ ЗАДАНИЙ

Каждый вариант содержит несколько типов задач, отмечаемых римскими цифрами. Номер варианта определяется последней цифрой номера студенческого билета.

КОНТРОЛЬНАЯ РАБОТА № 1

І. Задачи 01-10. Найти пределы функций, не пользуясь правилом Лопиталя:

1. a)
$$\lim_{x \to \infty} \frac{1 - 2x}{3x - 2}$$
;

6)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{3x}$$
;

$$B) \lim_{x\to 0}\frac{1-\cos x}{5x^2};$$

$$\Gamma) \lim_{x\to\infty} \left(\frac{x+3}{x-2}\right)^x.$$

2. a)
$$\lim_{x \to \infty} \frac{x^3 + 1}{2x^3 + 1}$$
;

6)
$$\lim_{x \to 7} \frac{\sqrt{2+x}-3}{x-7}$$
;

B)
$$\lim_{x\to 0} \frac{\arcsin 3x}{5x};$$

$$\Gamma) \lim_{x\to\infty} \left(\frac{2x-1}{2x+1}\right)^x.$$

3. a)
$$\lim_{x \to \infty} \frac{2x^3 + x^2 - 5}{x^3 + x - 2}$$
;

6)
$$\lim_{x \to 1} \frac{x - \sqrt{x}}{x^2 - x}$$
;

$$B) \lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{|x|};$$

$$\Gamma) \lim_{x\to\infty} \left(\frac{4x+1}{4x}\right)^{2x}.$$

4. a)
$$\lim_{x \to \infty} \frac{3x^4 + x^2 - 6}{2x^4 - x + 6}$$
; b) $\lim_{x \to 0} \frac{x}{\sqrt{1 + 3x - 1}}$;

6)
$$\lim_{x\to 0} \frac{x}{\sqrt{1+3x-1}}$$

B)
$$\lim_{x\to 0} \frac{5x}{\operatorname{arctg} x}$$
;

$$\Gamma$$
) $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$.

5. a)
$$\lim_{x \to \infty} \frac{2x^2 + 6x - 5}{5x^2 - x - 1}$$
; 6) $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$;

6)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$

$$B) \lim_{x\to 0} \frac{\cos x - \cos^3 x}{x^2};$$

$$\Gamma$$
) $\lim_{x\to +\infty} x \left[\ln(x+1) - \ln x\right]$.

6. a)
$$\lim_{x \to \infty} \frac{3 + x + 5x^4}{x^4 - 12x + 1}$$
;

6)
$$\lim_{x\to 0} \frac{\sqrt{1+3x}-\sqrt{1-2x}}{x+x^2}$$
;

$$B) \lim_{x\to 0} \frac{x^2 \operatorname{ctg} 2x}{\sin 3x};$$

r)
$$\lim_{x \to +\infty} (2x+1) [\ln(x+3) - \ln x]$$
.

7. a)
$$\lim_{x \to \infty} \frac{x - 2x^2 + 5x^4}{2 + 3x^2 + x^4}$$
;

6)
$$\lim_{x\to 0} \frac{\sqrt{1+3x^2}-1}{x^2+x^3}$$
;

B)
$$\lim_{x\to 0} \frac{1-\cos 6x}{1-\cos 2x}$$
;

r)
$$\lim_{x \to \infty} (x-5) [\ln(x-3) - \ln x]$$
.

8. a)
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{3x^2 + x - 5}$$
;

6)
$$\lim_{x\to 3} \frac{\sqrt{2x-1}-\sqrt{5}}{x-3}$$
;

B)
$$\lim_{x\to 0} \frac{\operatorname{tg}^2(x/2)}{x^2}$$
;

$$\Gamma$$
) $\lim_{x\to 1} (7-6x)^{x/(3x-3)}$.

9. a)
$$\lim_{x \to \infty} \frac{7x^4 - 2x^3 + 2}{x^4 + 3}$$
;

6)
$$\lim_{x\to 5} \frac{\sqrt{1+3x}-\sqrt{2x+6}}{x^2-5x}$$
;

$$B) \lim_{x\to 0} \frac{1-\cos 4x}{2x \operatorname{tg} 2x};$$

$$\Gamma$$
) $\lim_{x\to 2} (3x-5)^{2x/(x^2-4)}$.

10. a)
$$\lim_{x\to\infty} \frac{8x^5 - 3x^2 + 9}{2x^5 + 2x^2 + 5}$$
;

6)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{2x-2}}$$
;

B)
$$\lim_{x \to 0} 5x \operatorname{ctg} 3x$$
;

$$\Gamma$$
) $\lim_{x\to 3} (3x-8)^{2/(x-3)}$.

II. Задачи 11-20. Задана функция y = f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.

11.
$$f(x) = \begin{cases} x+4, & x<-1; \\ x^2+2, & -1 \le x<1; \\ 2x, & x \ge 1. \end{cases}$$
12.
$$f(x) = \begin{cases} x+2, & x \le -1; \\ x^2+1, & -1 < x \le 1; \end{cases}$$

12.
$$f(x) = \begin{cases} x+2, & x \le -1; \\ x^2+1, & -1 < x \le 1; \\ -x+3, & x > 1. \end{cases}$$

13.
$$f(x) = \begin{cases} -x, & x \le 0; \\ -(x-1)^2, & 0 < x < 2; \\ x-3, & x \ge 2. \end{cases}$$

14.
$$f(x) = \begin{cases} \cos x, & x \le 0; \\ x^2 + 1, & 0 < x < 1; \\ x, & x \ge 1. \end{cases}$$

15.
$$f(x) = \begin{cases} -x, & x \le 0; \\ x^2, & 0 < x \le 2; \\ x+1, & x > 2. \end{cases}$$

16.
$$f(x) = \begin{cases} -x, & x \le 0; \\ \sin x, & 0 < x \le \pi; \\ x - 2, & x > \pi. \end{cases}$$

17.
$$f(x) = \begin{cases} -(x+1), & x \le -1; \\ (x+1)^2, & -1 < x \le 0; \\ x, & x > 0. \end{cases}$$

18.
$$f(x) = \begin{cases} -x^2, & x \le 0; \\ \lg x, & 0 < x \le \frac{\pi}{4}; \\ 2, & x > \frac{\pi}{4}. \end{cases}$$

19.
$$f(x) = \begin{cases} x^2 + 1, & 0 < x < 1; \\ 2, & x > 1. \end{cases}$$

 $\begin{cases} -2x, & x \le 0; \end{cases}$

20.
$$f(x) = \begin{cases} -2x, & x \le 0; \\ \sqrt{x}, & 0 < x < 4; \\ 1, & x \ge 4. \end{cases}$$

III. Задачи 21-30 (а,б,в,г). Найти производные $\frac{dy}{dx}$ данных функций.

21. a)
$$y = 2\sqrt{4x+3} - \frac{3}{\sqrt{x^3 + x + 1}}$$
;

6)
$$y = (e^{\cos x} + 3)^2$$
;

B)
$$y = \ln(\sin(2x + 5);$$

r)
$$\operatorname{tg}\left(\frac{y}{x}\right) = 5x$$
.

22. a)
$$y = x^2 \sqrt{1 - x^2}$$
;

6)
$$y = \frac{4\sin x}{\cos^2 x}$$
;

$$B) y = \arctan(e^{2x});$$

$$\Gamma) x - y + \operatorname{arctg} y = 0.$$

23. a)
$$y = x\sqrt{(1+x^2)/(1-x)}$$
;

6)
$$y = \frac{1}{tg^2 2x}$$
;

B)
$$y = \arcsin \sqrt{1 - 3x}$$
;

r)
$$y \sin x = \cos(x - y)$$
.

24. a)
$$y = (3+6x)/\sqrt{3-4x+5x^2}$$
;

$$6) y = \sin x - x \cos x;$$

$$B) y = x^m \ln x;$$

$$\Gamma) \frac{y}{x} = arctg \left(\frac{x}{y} \right).$$

25. a)
$$y = \frac{x}{\sqrt{a^2 - x^2}}$$
;

$$6) y = \frac{\sin^2 x}{2 + 3\cos^2 x};$$

$$y = \frac{x \ln x}{x - 1};$$

r)
$$(e^x - 1)(e^y - 1) - 1 = 0$$
.

26. a)
$$y = \frac{1}{\sqrt{x^2 + 1}} + 5\sqrt[5]{x^3 + 1};$$
 6) $y = 2 \operatorname{tg}^3(x^2 + 1);$

$$(5) y = 2 t g^3 (x^2 + 1);$$

$$v = 3^{arctg(x^3)}$$

$$(x^2) v^2 x = e^{\frac{y}{x}}$$

B)
$$y = 3^{\arctan(g(x^3))};$$
 r) $y^2 x = e^{\frac{y}{x}}.$
27. a) $y = \sqrt[3]{(1+x^2)/(1-x^2)};$ 6) $y = \frac{1}{2} \operatorname{tg}^2 x + \ln(\cos x);$

5)
$$y = \frac{1}{2} tg^2 x + \ln(\cos x)$$
;

B)
$$y = \operatorname{arctg} \frac{x}{1 + \sqrt{1 - x^2}}$$

$$(x^3 + v^3 - 3axv = 0)$$

B)
$$y = \arctan \frac{x}{1 + \sqrt{1 - x^2}}$$
; r) $x^3 + y^3 - 3axy = 0$.
28. a) $y = 3\sqrt[3]{x^5 + 5x^4 - \frac{5}{x}}$; 6) $y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$;

$$6) y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$$

B)
$$y = \operatorname{arctg}(\operatorname{tg}^2 x);$$

$$\Gamma) x - y + a \sin y = 0.$$

29. a)
$$y = 5 \cdot \sqrt[5]{x^2 + x + \frac{1}{x}}$$
;

6)
$$y = 2^x e^{-x}$$

B)
$$y = (\arcsin x)/\sqrt{1-x^2}$$
; r $\ln y = \arctan\left(\frac{x}{y}\right)$.

r)
$$\ln y = \arctan\left(\frac{x}{y}\right)$$

30. a)
$$y = \sqrt{x^2 + 1} + \sqrt[3]{x^3 + 1}$$

30. a)
$$y = \sqrt{x^2 + 1} + \sqrt[3]{x^3 + 1}$$
; 6) $y = \frac{1}{3} \operatorname{tg}^3 x - \operatorname{tg} x + x$;

B)
$$y = \arctan \sqrt{\frac{3-x}{x-2}}$$
;

$$\Gamma) x - y + e^y \cdot \arctan x = 0.$$

IV. Задачи 31-40. Найти:
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$ для функции $y = f(x)$;

31.
$$y = \frac{x}{x^2 - 1}$$
; 36. $y = e^{\operatorname{ctg} 3x}$;

$$36. y = e^{\operatorname{ctg} 3x};$$

32.
$$y = \ln(\operatorname{ctg} 2x);$$

$$37. y = e^x \cos x;$$

$$33. y = x^3 \ln x;$$

$$38. y = e^{-x} \sin x;$$

34.
$$y = x \operatorname{arctg} x$$
;

39.
$$y = x\sqrt{1+x^2}$$
;

35.
$$y = \operatorname{arctg} x$$
;

40.
$$y = xe^{-x^2}$$
;

КОНТРОЛЬНАЯ РАБОТА №2

І. Задачи 41-50. Исследовать методами дифференциального исчисления функцию y = f(x) и, используя результаты исследования, схематично построить ее график.

41.
$$y = \frac{4x}{4+x^2}$$
.

42.
$$y = \frac{x^2 - 1}{x^2 + 1}$$
.

43.
$$y = \frac{x^2 + 1}{x^2 - 1}$$
.

44.
$$y = \frac{x^2}{x-1}$$
.

45.
$$y = \frac{x^3}{x^2 + 1}$$
.

46.
$$y = \frac{4x^3 + 5}{x}$$
.

47.
$$y = \frac{x^2 - 5}{x - 3}$$
.

48.
$$y = \frac{x^4}{x^3 - 1}$$
.

49.
$$y = \frac{4x^3}{x^3 - 1}$$

50.
$$y = \frac{2-4x^2}{1-4x^2}$$
.

II. Задачи 51 -60. Найти неопределенные интегралы. В пунктах а) и б) результаты проверить дифференцированием.

51. a)
$$\int e^{\sin^2 x} \sin 2x dx;$$

6)
$$\int \arctan\left(\sqrt{x}\right) dx;$$

$$\mathrm{B)} \qquad \int \frac{dx}{\left(x^3+8\right)};$$

$$\Gamma) \qquad \int \frac{dx}{1+\sqrt[3]{x+1}}.$$

52. a)
$$\int \frac{xdx}{\left(x^2+4\right)^6};$$

$$\int e^x \ln(1+3e^x) dx;$$

B)
$$\int \frac{2x^2 - 3x + 1}{x^3 + 1} dx;$$

$$\Gamma) \qquad \int \frac{dx}{\sin x + tgx}.$$

53. a)
$$\int \frac{x^3 dx}{\sqrt{1-x^8}};$$

$$6) \qquad \int x \cdot 3^x dx;$$

B)
$$\int \frac{(3x-7)dx}{x^3+4x^2+4x+16};$$

$$\Gamma) \qquad \int \frac{dx}{\sqrt{x+3} + \sqrt[3]{(x+3)^2}} \, .$$

54. a)
$$\int \frac{dx}{\cos^2 x (3 \lg x + 1)};$$
 6)
$$\int \frac{x \arcsin x}{\sqrt{1 - x^2}} dx;$$

$$\int \frac{x \arcsin x}{\sqrt{1-x^2}} dx$$

B)
$$\int \frac{dx}{x^3 + x^2 + 2x + 2}$$
; r) $\int \frac{x^2 + \sqrt{1 + x}}{\sqrt[3]{1 + x}} dx$.

$$\Gamma) \qquad \int \frac{x^2 + \sqrt{1+x}}{\sqrt[3]{1+x}} dx \, .$$

55. a)
$$\int \frac{\cos 2x \, dx}{\sin^2 2x}$$

$$\int x^2 e^{3x} dx;$$

B)
$$\int \frac{x^2 dx}{x^3 + 5x^2 + 8x + 4};$$
 r) $\int \frac{\cos x dx}{1 + \cos x}.$
56. a) $\int \frac{\sin x dx}{\sqrt[3]{\cos^2 x}};$ 6) $\int x \arcsin\left(\frac{1}{x}\right) dx;$
B) $\int \frac{(x+3) dx}{x^3 + x^2 - 2x};$ r) $\int \frac{(\sqrt[4]{x} + 1) dx}{(\sqrt{x} + 4) \sqrt[4]{x^3}}.$
57. a) $\int \frac{(x + \arctan x) dx}{1 + x^2};$ 6) $\int x \ln(x^2 + 1) dx;$
B) $\int \frac{(x^2 - 3) dx}{x^4 + 5x^2 + 6};$ r) $\int \frac{\sqrt{x + 5} dx}{1 + \sqrt[3]{x + 5}}.$
58. a) $\int \frac{\arctan x dx}{\sqrt[3]{x} (1 + x)} dx;$ 6) $\int x \sin x \cos x dx;$
B) $\int \frac{x^2 dx}{x^4 - 81};$ r) $\int \frac{dx}{3\cos x + 4\sin x}.$
59. a) $\int \frac{\sin x dx}{\sqrt[3]{3 + 2\cos x}};$ 6) $\int x^2 \sin 4x dx;$
B) $\int \frac{(x^2 - x + 1) dx}{x^4 + 2x^2 - 3};$ r) $\int \frac{(\sqrt{x} - 1)(\sqrt[6]{x} + 1)}{\sqrt[3]{x^2}} dx.$
60. a) $\int \frac{\sqrt[3]{4 + \ln x}}{\sqrt[3]{4 + \ln x}} dx;$ 6) $\int x \ln^2 x dx;$

III. Задачи 61-70. Сделать чертеж и вычислить площадь фигуры, ограниченной линиями:

61.
$$y = 3x^2 + 1$$
 и $y = 3x + 7$;

66.
$$y=1-x$$
 и $y=x^2-4x+3$;

 Γ)

62.
$$y = x^2 - 4$$
 и $y = 7x - 14$;

67.
$$y = x^2 - 2$$
 и $y = 2x - 2$;

63.
$$y = x^2 - 2x + 1$$
 и $y = 5x - 9$; 68. $y = x^2 - x$ и $y = 2x - 2$;

$$67. y = x = 2$$
 $y = 2x = 2$

64.
$$y = 3x + 1$$
 u $y = x^2 - 2x + 5$; 69. $y = x^2 - 2x + 3$ u $y = 3x - 1$;

60.
$$y = x - x$$
 if $y = 2x - 2$,

65.
$$v = x^2$$
 и $v = \sqrt{x}$:

70.
$$y = x^2 + 2x - 1$$
 и $y = 7x - 5$.

ПРАВИЛА ВЫПОЛНЕНИЯ И ОФОРМЛЕНИЯ КОНТРОЛЬНЫХ РАБОТ

При выполнении контрольных работ необходимо строго придерживаться указанных ниже правил. Работы, выполненные без соблюдения этих правил, не засчитываются и возвращаются студенту для переработки.

- 1. Каждая контрольная работа должна быть выполнена в отдельной тетради чернилами любого цвета, кроме красного. Необходимо оставлять поля для замечаний рецензента.
- 2. В заголовке работы на обложке должны быть ясно написаны фамилия студента, его инициалы, учебный номер (шифр), название дисциплины, номер контрольной работы; здесь же следует указать название учебного заведения, дату отсылки работы в университет и адрес студента. В конце работы следует поставить дату ее выполнения и подпись студента.
- 3. В работу должны быть включены все задачи, указанные в задании, строго по положенному варианту. Контрольные работы, содержащие не все задания, а также задачи не своего варианта, не засчитываются.
- 4. Решения задач надо располагать в порядке возрастания их номеров, указанных в задании, сохраняя номера задач.
- 5. Перед решением каждой задачи надо полностью выписать ее условие. В том случае, если несколько задач, из которых студент выбирает задачи своего варианта, имеют общую формулировку, следует, переписывая условие задачи, заменить общие данные конкретными. взятыми из соответствующего номера.
- 6. Решения задач следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи.
- 7. После получения прорецензированной работы, как незачтенной, так и зачтенной, студент должен исправить все отмеченные рецензентом ошибки и недочеты и выполнить работу над ошибками в той же тетради.