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Abstract

In this paper we consider the problem of extracting secret key from an eavesdropped source
pXYZ at a rate given by the conditional mutual information. We investigate this question under
three different scenarios: (i) Alice (X) and Bob (Y) are unable to communicate but share com-
mon randomness with the eavesdropper Eve (Z), (ii) Alice and Bob are allowed one-way public
communication, and (iii) Alice and Bob are allowed two-way public communication. Distri-
butions having a key rate of the conditional mutual information are precisely those in which a
“helping” Eve offers Alice and Bob no greater advantage for obtaining secret key than a fully
adversarial one. For each of the above scenarios, strong necessary conditions are derived on the
structure of distributions attaining a secret key rate of I(X : Y|Z). In obtaining our results, we
completely solve the problem of secret key distillation under scenario (i) and identify H(S|Z)
to be the optimal key rate using shared randomness, where S is the Gács-Körner Common
Information. We thus provide an operational interpretation of the conditional Gács-Körner
Common Information. Additionally, we introduce simple example distributions in which the
rate I(X : Y|Z) is achievable if and only if two-way communication is allowed.

1 Introduction

A basic information-processing task involves the exchange of secret information between Alice
(X) and Bob (Y) in the presence of an eavesdropper, Eve (E). If Alice and Bob have some pre-
established key that is secret from Eve, then any future message M can be transmitted using the
key as a one-time pad. Thus, the problem of private communication can be reduced to the prob-
lem of secret key distillation, which studies the extraction of secret key ΦXY ¨ qZ from some initial
tripartite correlation pXYZ. Here, ΦXY is a perfectly correlated bit and qZ is an arbitrary distribu-
tion. Often, the correlations pXYZ are presented as a many-copy source pn

XYZ, and Alice and Bob
wish to know the optimal rate of secret bits per copy that they can distill from this source.

It turns out that Alice and Bob can often enhance their distillation capabilities by openly dis-
closing some information about X and Y through public communication [AC93, Mau93]. In gen-
eral, Alice and Bob’s communication schemes can be interactive with one round of communication
depending on what particular messages were broadcasted in previous rounds. Such interactive
protocols are known to generate higher key rates than non-interactive protocols, at least in the ab-
sence of “noisy” local processing by Alice and Bob [Mau93]. Thus, for a given distribution pXYZ,
one obtains a hierarchy of key rates pertaining to the respective scenarios of no communication,
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one-way communication, and two-way (interactive) communication. It is also possible to con-
sider no-communication scenarios in which Alice and Bob have access to some publically shared
randomness that is uncorrelated with their primary source pXYZ. Clearly publically shared ran-
domness is a weaker resource than public communication since the latter is able to generate the
former. However, below we will prove even stronger that publically shared randomness offers no
advantage whatsoever for secret key distillation.

For the one-way communication scenario, a single-letter characterization of the key rate has
been proven by Ahlswede and Csiszár [AC93]. When the unidirectional communication is from
Alice to Bob, we denote the key rate by ÝÑK (X : Y||Z), while ÐÝK (X : Y||Z) denotes the rate when
communication is from Bob to Alice only. No formula is known for the two-way key rate of a
given distribution, which we denote by K(X : Y||Z), and the complexity of protocols utilizing
interactive communication makes computing this a highly challenging open problem.

In the special case of an uncorrelated Eve in pXYZ, the key rate is given by the mutual in-
formation I(X : Y), and this can be achieved using one-way communication. For more general
distributions in which Eve possesses some side information of XY, the conditional mutual in-
formation I(X : Y|Z) is a known upper bound for the key rate under two-way communication
[AC93, Mau93]. In general this bound is not tight [MW99]. Rather, the conditional mutual in-
formation quantifies the key rate when Eve helps Alice and Bob by broadcasting her variable Z.
Key obtained by a helping Eve is also known as private key [CN00], and private key is still secret
from Eve even though she helps Alice and Bob obtain it. The relevance of private key naturally
arises in situations where Eve functions as a central server who helps establish secret correlations
between Alice and Bob. Thus, distributions with a secret key rate equaling the private key rate of
I(X : Y|Z) are precisely those in which nothing is gained by a helping Eve.

The objective of this paper is to investigate the types of distributions for which I(X : Y|Z)
is indeed an achievable secret key rate. This will be considered under the scenarios of (i) publi-
cally shared randomness but no communication, (ii) one-way communication, and (iii) two-way
communication. A full solution to the problem would involve a structural characterization of the
distributions pXYZ whose key rates are I(X : Y|Z). We are able to fully achieve this only for the
no-communication setting, but we nevertheless derive strong necessary conditions for both the
one-way and the two-way scenarios. In the case of one-way communication, our condition makes
use of the key-rate formula derived by Ahlswede and Csiszár. For the statement of this formula,
recall that three variables A, B, and C satisfy the Markov chain A ´ B ´ C if C is conditionally
independent of A given B; i.e. p(c|b, a) = p(c|b) for letters in the range of A, B, and C. Then,

Lemma 1 ([AC93]). For distribution pXYZ,
ÝÑK (X : Y||Z) = max

KU|XYZ
I(K : Y|U)´ I(K : Z|U), (1)

where the maximization is taken over all auxiliary variables K and U satisfying the Markov chain KU ´
X´YZ, with K and U ranging over sets of size no greater than |X |+ 1. In particular,

ÝÑK (X : Y||Z) ě I(X : Y)´ I(X : Z). (2)

In this paper, we consider when variables KU can be found that satisfy both KU ´ X ´ YZ
and I(K; Y|U) ´ I(K; Z|U) = I(X : Y|Z). Theorem 2 below offers a necessary condition on the
structure of distributions for which this is possible. Turning to the scenario of two-way com-
munication, we utilize the well-known intrinsic information upper bound on K(X : Y||Z). For
distribution pXYZ, its intrinsic information is given by

I(X : Y Ó Z) := min
Z|Z

I(X : Y|Z) (3)
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where the minimization is taken over over all auxiliary variables Z satisfying XY´ Z´ Z, with Z
having the same range as Z [CRW03]. Thus, the intrinsic information is the smallest conditional
mutual information achievable after Eve processes her variable Z. The intrinsic information satis-
fies K(X : Y||Z) ď I(X : Y Ó Z). In Theorem 3 below, we identify a large class of distributions for
which a channel Z|Z can be found satisfying I(X : Y|Z) ă I(X : Y|Z). This allows us to derive a
necessary condition on distributions having K(X : Y||Z) = I(X : Y|Z).

A brief summary of our results is the following:

• For publically shared randomness with no communication, we identify H(JXY|Z) as the
secret key rate, where JXY is the Gács-Körner Common Information of Alice and Bob’s
marginal distribution pXY. Moreover, this rate is achievable without using shared random-
ness. Using this result, the structure of distributions attaining I(X : Y|Z) can easily be
characterized.

• When one-way communication is permitted between Alice and Bob, we show that the dis-
tribution pXYZ must satisfy a certain “block-like” structure in order to obtain the key rate
I(X : Y|Z). Specifically, given some outcome z of Eve, if there exists collections of events
X0 and Y0 for Alice and Bob respectively that satisfy p(Y0|X0, z) = p(X0|Y0, z) = 1, then
p(Y0|X0) = p(X0|Y0) = 1; i.e. the conditional probabilities hold regardless of Eve’s out-
come.

• For key distillation with two-way communication, we show that distributions attaining a
key rate of I(X : Y|Z) must also satisfy a certain type of uniformity similar to the one-
way case. One special class of distributions our necessary condition applies to are those
obtained by mixing a perfectly correlated distribution pXY with an uncorrelated one such
that the marginal distributions have the same range and such that Eve’s variable Z specifies
which one of the distributions Alice and Bob hold. We show that unless either Alice or Bob
can likewise identify the distribution from his or her variable, a key rate of I(X : Y|Z) is
unattainable.

• We construct distributions in which a distillation rate of I(X : Y|Z) is unachievable when
the communication is restricted from Alice to Bob, and yet it becomes achievable if the com-
munication direction is from Bob to Alice. We further provide an example when I(X : Y|Z)
is achievable only if two-way communication is used. To our knowledge, these are the first
known examples rigorously demonstrating such communication dependency for optimal
key distillation. We then turn to the difference between single-party key extraction versus
shared key extraction by public communication. We completely characterize the distribu-
tions in which the latter can be accomplished at the same rate as the former.

Before presenting these results in greater detail, we begin in Section 2 with a more precise
overview of the key rates studied in this paper. In Section 3, we then present the Gács-Körner
Common Information and prove some basic properties. Section 4 contains our main results, with
longer proofs postponed to the appendix. Finally, Section 5 offers some concluding remarks.

2 Definitions

Let us review the relevant definitions of secret key rate under various communication scenarios.
We consider random variables X, Y and Z ranging over finite alphabets X , Y , and Z respectively.
For a general distribution q, we say its support (denoted by supp[q]) is the collection of x such that
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q(x) ą 0. In all distillation tasks, we assume that Alice and Bob each have access to one part of
an i.i.d. (identical and independently distributed) source XYZ whose distribution is pXYZ. Hence,
after n realizations of the source, Xn, Yn and Zn belong to Alice, Bob, and Eve respectively. In
addition, Alice and Bob each possess a local random variable, QA and QB respectively, which are
mutually independent from each other and from XnYnZn. This allows them to introduce local
randomness into their processing of XnYn.

We first turn to the most restrictive scenario, which is key distillation using publicly shared
randomness. The common randomness (c.r.) key rate of X, Y, and Z, denoted by Kc.r.(X : Y||Z), is
defined to be the largest R such that for every ε ą 0, there is an integer N such that n ě N implies
the existence of (a) a random variable W independent of XnYnZn and ranging over some setW ,
(b) a random variable K ranging over some set K, and (c) a pair of mappings f (Xn, QA, W) and
g(Yn, QB, W) for which

(i) Pr[ f = g = K] ą 1´ ε;

(ii) log |K| ´ H(K|ZnW) ă ε;

(iii) 1
n log |K| ě R.

We next move to the more general scenario of when Alice and Bob are allowed to engage in
public communication. A local operations and public communication (LOPC) protocol consists of a
sequence of public communication exchanges between Alice and Bob. The ith message exchanged
between them is described by the variable Mi. If Alice (resp. Bob) is the broadcasting party in
round i, then Mi is a function of Xn and QA (resp. Yn and QB) as well as the previous messages
(M1, M2, ¨ ¨ ¨ , Mi´1). The protocol is one-way if there is only one round of a message exchange.

For distribution pXYZ, the Alice-to-Bob secret key rate ÝÑK (X : Y||Z) is the largest R that satisfies
the above three conditions except with W being replaced by some message M that is generated
by Alice and therefore a function of (Xn, QA). We can likewise define the Bob-to-Alice key rateÐÝK (X : Y||Z). The (two-way) secret key rate of X and Y given Z, denoted by K(X : Y||Z), is de-
fined analogously except with M = (M1, M2, ¨ ¨ ¨ , Mr) being any random variable generated by
an LOPC protocol [Mau93, AC93]. The key rates satisfy the obvious relationship:

Kc.r.(X : Y||Z) ď tÝÑK (X : Y||Z),ÐÝK (X : Y||Z)u ď K(X : Y||Z). (4)

3 The Gács-Körner Common Information

In this section, we introduce the Gács-Körner Common Information. For every pair of random
variables XY, there exists a maximal common variable JXY in the sense that JXY is a function of both
X and Y, and any other such common function of both X and Y is itself a function of JXY. Hence,
up to relabeling, the variable JXY is unique for each distribution pXY. In terms of its structure, a
distribution pXY can always be decomposed as

p(x, y) =
ÿ

JXY=j

p(x, y|j)p(j), (5)

where for any x, x1 P X and y, y1 P Y , the conditional distributions satisfy p(x, y|j)p(x, y1|j1) = 0
and p(x, y|j)p(x1, y|j1) = 0 if j = j1. Gács and Körner identify H(JXY) as the common information
of XY [GK73].

It is instructive to rigorously prove the statements of the preceding paragraph. A common
partitioning of length t for XY are pairs of subsets (Xi,Yi)

t
i=1 such that
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(i) Xi XXj = Yi XYj = H for i = j,

(ii) p(Xi|Yj) = p(Yi|Xj) = δij, and

(iii) if (x, y) P Xi ˆYi for some i, then pX(x)pY(y) ą 0.

For a given common partitioning, we refer to the subsetsXiˆYi as the “blocks” of the partitioning.
The subscript i merely serves to label the different blocks, and for any fixed labeling, we associate
a random variable C(X, Y) such that C(x, y) = i if (x, y) P Xi ˆ Yi. Note that each party can
determine the value of J from their local information, and it is therefore called a common function
of X and Y. A maximal common partitioning is a common partitioning of greatest length. The
following proposition is proven in the appendix.

Proposition 1.

(a) Every pair of finite random variables XY has a unique maximal common partitioning, which we
denote by JXY,

(b) Variable JXY satisfies

H(JXY) = max
K
tH(K) : 0 = H(K|X) = H(K|Y)u

iff JXY is a common function for the maximal common partitioning of XY.

(c) If f (X) = g(Y) = C is any other common function of X and Y, then C(JXY).

With property (a), we can speak unambiguously of the maximal common partitioning of a
distribution pXY. Consequently the variable JXY is unique up to a relabeling of its range. The
following proposition provides a useful characterization of values x and x1 that belong to the
same block in a maximal common partitioning.

Proposition 2. If JXY(x) = JXY(x1) for x, x1 P JXY, then there exists a sequence of values

xy1x1y2x2 ¨ ¨ ¨ ynx1

such that p(x, y1)p(y1, x1)p(x1, y2) ¨ ¨ ¨ p(yn, x1) ą 0.

Proof. See the appendix as well as [GK73].

4 Results

4.1 Key Distillation Using Auxiliary Public Randomness

The Gács and Körner Common Information plays a central role in the problem of key distillation
with no communication. To see a preliminary connection, we recall an operational interpretation
of H(JXY) that Gács and Körner prove in Ref. [GK73]. The task involves Alice and Bob construct-
ing faithful encodings of their respective sources X and Y, and H(JXY) quantifies the asymptotic
average sequence-length of codewords per copy such that both Alice and Bob’s encodings output
matching codewords with high probability over this sequence [GK73].

For the task of key distillation, Alice and Bob are likewise trying to convert their sources into
matching sequences of optimal length. However, the key distillation problem is different in two
ways. On the one hand there is the additional constraint that the common sequence should be

5



nearly uncorrelated from Eve. On the other hand, unlike the Gács-Körner problem, it is not re-
quired that these sequences belong to faithful encodings of the sources X and Y. Nevertheless,
we find that H(JXY|Z) quantifies the distillable key when Alice and Bob are unable to communi-
cate with one another. This is also the rate even if Alice and Bob have access to auxillary public
randomness which is uncorrelated with their primary distribution.

Theorem 1. Kc.r.(X : Y||Z) = H(JXY|Z). Moreover, H(JXY|Z) is achievable with no additional common
randomness.

Proof. Achievability: We will prove that H(JXY|Z) is an achievable rate without any auxiliary
shared public randomness (i.e. W is constant). For n copies of pXYZ, Alice and Bob extract their
common information from each copy of pXYZ. This will generate a sequence of Jn

XY, with Alice
and Bob having identical copies of this sequence. It is now a matter of performing privacy am-
plification on this sequence to remove Eve’s information [BBCM95]. The main construction is
guaranteed to exist by the following lemma.

Lemma 2 (See Corollary 17.5 in [CK11]). For an i.i.d. source of two random variables JXY and Z with
JXY ranging over set J , for any δ ą 0 and k ă 2n[H(JXY|Z)´δ], there exists an ε ą 0 and a mapping
κ : J n Ñ K = t1, 2, ¨ ¨ ¨ , ku such that

log |K| ´ H(κ(Jn
XY)|Zn) ă 2´nε.

From this lemma, it follows that H(JXY|Z) is an achievable key rate.

Converse: The converse proof follows analogously to the converse proof of Theorem 2.6 in Ref.
[CN00] (see also [CK11]). We will first prove the converse under the assumption of no local
randomness (i.e. QA and QB are constant). We will then show that adding local randomness
does not change the result. Suppose that Kc.r.(X : Y||Z) = R. We consider a slightly weaker
security condition than the one presented in Sect. 2. This is done by replacing (ii) with (ii’):
1
n (log |K| ´ H(K|ZnW)) ă ε. Under the weaker condition, (i) implies that

1
n
|H( f |ZnW)´ H(K|ZnW)| ď 1

n
maxtH( f |KZnW), H(K| f ZnW)u

ď 1
n

maxtH( f |K), H(K| f )u

ď 1
n
(h(ε) + ε(log |K| ´ 1)) , (6)

where the last line follows from Fano’s Inequality. Hence, under the assumption of the original se-
curity condition, 1

n (log |K| ´ H( f |ZnW)) ă ε + O( ε
n ). This means that, without loss of generality,

K can be assumed to be a function of (Xn, QA, W); i.e. K = f (Xn, QA, W). Then, for every δ, ε ą 0
and n sufficiently large, there exists a random variable W independent of XnYnZn along with func-
tions f (Xn, W) and g(Yn, W) satisfying (i) Pr[ f = g = K] ą 1´ ε, (ii’) 1

n (log |K| ´H(K|ZnW)) ă ε

and (iii) 1
n log |K| ě R.

Note that from (i) in the security condition, Fano’s Inequality together with data processing
gives

H(K|YnW) ă h(ε) + ε(log |K| ´ 1). (7)

Combining this with (ii’) gives

1
n
(1´ ε) log |K| ă 1

n
[H(K|ZnW)´ H(K|YnW) + h(ε)´ ε],
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and so

R ď 1
n

log |K|+ δ ă 1
1´ ε

¨ 1
n
[H(K|ZnW)´ H(K|YnW)] +

h(ε)´ ε

1´ ε
¨ 1

n
+ δ. (8)

To analyze the quantity H(K|ZnW)´ H(K|YnW), we will use a standard trick.

Lemma 3. Let J be uniformly distributed over the set t1, ¨ ¨ ¨ , nu and let A(i) denote the ith instance of
A in An. Likewise, let A(ăi) = A(1) ¨ ¨ ¨ A(i´1) and A(ąi) = A(i+1) ¨ ¨ ¨ A

(n) with A(ă1) := H and
A(n+1) := H. Then for random variables P and Q and sequences of random variables An, Bn

H(P|AnQ)´ H(P|BnQ) = n[I(P : B(J)|TQ)´ I(P : A(J)|TQ)], (9)

where T = JA(ąJ)B(ăJ)

Proof. See, e.g., proof of Lemma 17.12 in [CK11].

Then we can use Lemma 3 to obtain

H(K|ZnW)´ H(K|YnW) = n[I(K : Y(J)|UW)´ I(K : Z(J)|UW)], (10)

where U := JY(ăJ)Z(ąJ). Notice that for any i P t1, ¨ ¨ ¨ , nuwe have

X(ăi)X(ąi)Y(ăi)Z(ąi) ´ X(i) ´Y(i)Z(i), (11)

since the sampling is i.i.d.. Therefore, because K is a function of (Xn, W), we have

KU ´ X(J)W´Y(J)Z(J). (12)

Removing the superscript “J” and taking ε, δ Ñ 0, we have the bound

R ď I(K : Y|UW)´ I(K : Z|UW) (13)

such that KU ´ XW ´YZ.
Next, Eq. (7) gives

h(ε) + ε(log |K| ´ 1) ą H(K|YnW)´ H(K|XnW)

= n[I(K : X(J)|JY(ăJ)X(ąJ)W)´ I(K : Y(J)|JY(ăJ)X(ąJ)W)], (14)

where the first inequality follows because H(K|XnW) is nonnegative and the quality follows from
Lemma 3. We want to put this in terms of U. To do this, note that

I(K : X(J)|JY(ăJ)X(ąJ)W) = I(KY(ăJ)X(ąJ) : X(J)|JW)

= I(KY(ăJ)X(ąJ)Z(ąJ) : X(J)|JW)´ I(Z(ąJ) : X(J)|JKY(ăJ)X(ąJ)W)

= I(KUX(ąJ) : X(J)|JW)

= I(KU : X(J)|JW) + I(X(ąJ) : X(J)|KUW), (15)

where the first equality follows from the chain rule and I(Y(ăJ)X(ąJ) : X(J)|JW) = 0, and in the
second equality

I(Z(ąJ) : X(J)|JKY(ăJ)X(ąJ)W) ď I(Z(ąJ) : KX(J)|JY(ăJ)X(ąJ)W)

= I(Z(ąJ) : X(J)|JY(ăJ)X(ąJ)W) (16)
= 0.
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The first equality (16) uses I(Z(ąJ) : K|JY(ăJ)X(ěJ)W) = 0 since K ´ JY(ăJ)X(ěJ)W ´ Z(ąJ) is a
Markov chain. Again this follows from the basic Markov condition K´WXn´YnZn and the sam-
pling is i.i.d.. The second equality follows from i.i.d. sampling and W independence of Xn, Yn, Zn.

A similar analysis likewise gives

I(K : Y(J)|JY(ăJ)X(ąJ)W) = I(KU : Y(J)|JW) + I(X(ąJ) : Y(J)|KUW)

ď I(KU : Y(J)|JW) + I(X(ąJ) : X(J)|KUW), (17)

where the inequality follows from the Markov condition

X(ąJ) ´ KUX(J)W ´Y(J),

which can be derived from the more obvious Markov condition

KUXn ´ JX(J)W ´Y(J).

Putting everything together yields

h(ε) + ε(log |K| ´ 1) ą H(K|YnW)´ H(K|XnW)

ą I(KU : X(J)|JW)´ I(KU : Y(J)|JW)

= I(KU : X(J)Y(J)|JW)´ I(KU : Y(J)|JX(J)W)´ I(KU : Y(J)|JW) (18)

= I(KU : X(J)|JY(J)W) + I(KU : Z(J)|JY(J)X(J)W) (19)

= I(KU : X(J)Z(J)|JY(J)W),

where the second term in (18) is zero from the already proven Markov chain KU´XW ´YZ, and
in (19) we use the fact that I(KU : Z(J)|JY(J)X(J)W) = 0. Removing the superscript “J” and taking
ε Ñ 0 necessitates the Markov chain KU ´YW ´ XZ.

The double Markov chain K´XW ´Y and K´YW ´X implies that I(K : XY|JXYW) = 0 (see
Proposition 4 below). Since K is a function of (X, W), we have that H(K|JXYW) = 0. Thus, K must
also be a function of (Y, W). Continuing Eq. (13) gives the bound

R ď I(K : Y|UW)´ I(K : Z|UW)

= H(K|UW)´ I(K : Z|UW)

= H(K|ZUW) ď H(K|ZW). (20)

We have therefore obtained the following:

R ď max H(K|ZW), (21)

where the maximization is taken over all variables K such that H(K|XW) = H(K|YW) = 0.
This can be further bounded by using the following proposition.

Proposition 3. If W is independent of XY and H(K|XW) = H(K|YW) = 0, then K is a function of
(JXY, W).

Proof. The fact that H(K|XW) = H(K|YW) = 0 implies the existence of two functions f (X, W)
and g(Y, W) such that Pr[ f (X, W) = g(Y, W)] = 1. Consequently, if p(x1, y1)p(x1, y2) ą 0, then
f (x1, w) = g(y1, w) = g(y2, w) for all w P W with p(w) ą 0. Indeed, if, say, f (x1, w) = g(y1, w),
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then Pr[ f (X, W) = g(Y, W)] ě p(x1, y1, w) = p(x1, y2)p(w) ą 0, where we have used the in-
dependence between XY and W. By the same reasoning, p(x1, y1)p(y1, x2) ą 0 implies that
f (x1, w) = f (x2, w) = g(y1, w) for all w P W . Turning to Proposition 2, if JXY(x) = JXY(x1), then
there exists a sequence xy1x1y2x2 ¨ ¨ ¨ ynx1 such that p(xy1)p(y1x1)p(x1y2) ¨ ¨ ¨ p(ynx1) ą 0. There-
fore, as just argued, we must have that f (x, w) = f (x1, w) for all w P W . Hence K must be a
function of (JXY, W).

We now apply Proposition 3 to Eq. (21). Suppose that K obtains the maximization in Eq. (21).
Then, since K is a function of (JXY, W), we have that

H(K|ZW) ď H(JXYW|ZW) = H(JXY|ZW) ď H(JXY|Z). (22)

This proves the desired upper bound under no local randomness.
To consider the case when Alice and Bob have local randomness QA and QB, respectively,

define X̂ := (X, QA) and Ŷ := (Y, QB). Then repeating the above argument shows that R ď
H(JX̂Ŷ|Z). It is straightforward to show that with QA and QB pairwise independent and indepen-
dent of XY, we have JX,Y = JXY.

We complete the proof by giving the Double Markov Chain Proposition used to obtain equa-
tion (20) above.

Proposition 4 (Conditional Double Markov Chains (also Exercise 16.25 in [CK11])). Random vari-
ables WXYZ satisfy the two Markov chains X´YZ´W and Y´ XZ´W iff I(XY : W|JXY|ZZ) = 0.

Proof. If I(XY : W|JXY|ZZ) = 0 then I(Y : W|JXY|ZZ) = 0. The Markov chain X´YZ´W follows
since

I(XY : W|JXY|ZZ) = I(X : W|YJXY|ZZ) + I(Y : W|JXY|ZZ)

= I(X : W|YZ) + I(Y : W|JXY|ZZ),

where we have use the fact that JXY|Z is a function X and Y when given Z. A similar argument
shows that Y´ XZ´W.

On the other hand, if the two Markov chains hold, then whenever pXYZx, y, z ą 0, we have

p(W = w|x, y, z) = p(w|x, z) = p(w|y, z). (23)

Hence, the conditional distribution p(w|x, y, z) is constant across each blockXiˆYi in the maximal
common partitioning of PXY|Z=z. Consequently,

pW|XYZ = pW|JXY|ZZ,

and so for any JXY|Z = j and Z = z for which p(j, z) ą 0, we have

p(x, y, w|j, z) = p(w|x, y, j, z)p(x, y|j, z)
= p(w|x, y, z)p(x, y|j, z) = p(w|j, z)p(x, y|j, z). (24)

Thus, I(XY : W|JXY|ZZ) = 0.

9



(a) Not Uniform Block

X ÝÑ

Y

Ó

Z = 0 0 1 2

0 1/2 ¨ ¨
1 ¨ 1/2 ¨
2 ¨ ¨ ¨

Z = 1 0 1 2

0 ¨ 1/3 ¨
1 ¨ 1/3 ¨
2 ¨ ¨ 1/3

(b) Uniform Block

X ÝÑ

Y

Ó

Z = 0 0 1 2

0 1/2 ¨ ¨
1 ¨ 1/2 ¨
2 ¨ ¨ ¨

Z = 1 0 1 2

0 ¨ ¨ ¨
1 ¨ ¨ 1/3

2 ¨ 1/3 1/3

Figure 1: Examples of a distribution that is not uniform block (a) and one that is (b). Each entry corresponds
to a conditional probability value p(x, y|z). UB distribution (b) is not uniform block independent (UBI) since
the block in the Z = 1 plane contains correlations between Alice and Bob.

In Ref. [CFH14] we have studied a related quantity known as the maximal conditional common
function JXY|Z, which is the collection of variables tJXY|Z=z : z P Zu with JXY|Z=z being a maximal
common function of the conditional distribution pXY|Z=z. The variable JXY|Z is again unique for
every distribution pXYZ up to relabeling. Since JXY|Z=z is computed from both X and Y with the
additional information that Z = z, maximality of JXY|Z=z ensures that JXY is a function of JXY|Z=z
for each z P Z . In other words, a labeling of JXY and JXY|Z can be chosen so that JXY is a coarse-
graining of JXY|Z. Therefore, H(JXY|Z) ď H(JXY|Z|Z) with equality iff H(JXY|Z|ZJXY) = 0. When
the equality condition holds, it means that for each z P Z , the value of JXY|Z=z can be determined
from JXY alone. Hence, the variables JXY and JXY|Z must be equivalent up to relabeling. From this
it follows that a distribution satisfies H(JXY|Z|ZJXY) = 0 iff it admits a decomposition of

p(x, y, z) =
ÿ

JXY=j

p(x, y|z, j)p(j|z)p(z), (25)

where for any x, x1 P X , y, y1 P Y and z, z1 P Z the conditional distributions satisfy

p(x, y|z, j)p(x, y1|z1, j1) = 0, p(x, y|j)p(x1, y|z1, j1) = 0 if j = j1.

The class of distributions of this form we shall call uniform block (UB) (see Fig. 1).
The quantity H(JXY|Z|Z) is the private key rate when Eve is helping by announcing her vari-

able, yet Alice and Bob are still prohibited from communicating with one another. Thus, the
difference H(JXY|Z|Z) ´ H(JXY|Z) quantifies how much Eve can assist Alice and Bob in distill-
ing key when no communication is exchanged between the two. From the previous paragraph,
it follows that Eve offers no assistance (i.e. the private key rate equals the secret key rate) in the
no-communication scenario iff the distribution is UB.

Returning to Theorem 1, we can now answer the underlying question of this paper for no-
communication distillation. By using the chain rule of conditional mutual information and the
fact that JXY is both a function of X and Y, we readily compute

I(X : Y|Z) = I(JXYX : Y|Z) = I(JXY : Y|Z)´ I(X : Y|ZJXY)

= H(JXY|Z)´ I(X : Y|ZJXY). (26)

10



The conditional mutual information is thus an achievable rate whenever I(X : Y|ZJXY) = 0.
Distributions satisfying this equality are uniform block with the extra condition that p(x, y|z, j) =
p(x|z, j)p(y|z, j) in Eq. (25). We shall call distributions having this form uniform block independent
(UBI). Putting everything together, we find that

Corollary 1. A distribution pXYZ satisfies Kc.r.(X : Y||Z) = I(X : Y|Z) if and only if it is uniformly
block independent.

Remark. The no-communication results discussed above and proven in the appendix are already
implicit in the work of Csiszár and Narayan. In Ref. [CN00], they study various key distillation
scenarios with Eve functioning as a helper and limited communication between Alice and Bob.
Included in this is the no-communication scenario with and without helper. However, being very
general in nature, Csiszár and Narayan’s results involve optimizations over auxiliary random
variables, and it is therefore still a non-trivial matter to discern Theorem 1 and Corollary 1 directly
from their work. Additionally, they do not consider the scenario of just shared public randomness.

4.2 Obtaining I(X : Y|Z) with One-Way Communication

In this section we want to identify the type of tripartite distributions from which secret key can be
distilled at the rate I(X : Y|Z) using one-way communication. Since K(X : Y|Z) ď I(X : Y|Z), our
analysis deals with distributions for which one-way communication suffices to optimally distill
secret key. Manipulating Eq. (1) of Lemma 1 allows us to determine when ÝÑK (X : Y||Z) = I(X :
Y|Z). We have that

I(K : Y|U)´ I(K : Z|U) = I(K : Y|ZU)´ I(K : Z|YU)

= I(KU : Y|Z)´ I(U : Y|Z)´ I(K : Z|YU)

= I(X : Y|Z)´ I(X : Y|KUZ)´ I(U : Y|Z)´ I(K : Z|YU). (27)

From this and Lemma 1, we conclude the following.

Lemma 4. Distribution pXYZ has ÝÑK (X : Y||Z) = I(X : Y|Z) iff there exists variables KUXYZ with K
and U ranging over sets of size no greater than |X |+ 1 such that

(1) KU ´ X´YZ, (2) X´ KUZ´Y,
(3) U ´ Z´Y, (4) K´YU ´ Z. (28)

The conditions of Lemma 4 allow for the follow rough interpretation. (1) says that Alice is able
to generate variables K and U from knowledge of her variable X. We think of K as containing the
key that Alice and Bob will share and U as the public message sent from Alice to Bob. (2) says
that from Eve’s perspective, Alice and Bob share no more correlations given U and K. Likewise,
(3) says that from Eve’s perspective, the public message is uncorrelated with Bob. Finally, (4) says
that after learning U, Bob can generate the key K that is independent from Eve.

Unfortunately, Lemma 4 does not provide a transparent characterization of the distributions
for which ÝÑK (X : Y||Z) = I(X : Y|Z). We next proceed to obtain a better picture of these distribu-
tions by exploring additional consequences of the Markov chains in Eq. (28). The following places
a necessary condition on the distributions. We will see in Section 4.4, however, that it fails to be
sufficient.
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Theorem 2. If distribution pXYZ has either ÝÑK (X : Y||Z) = I(X : Y|Z) or ÐÝK (X : Y||Z) = I(X : Y|Z),
then pXYZ must have the following property: For any z P Z , if Xi ˆYi and Xj ˆYj are two distinct blocks
in the maximal common partitioning of pXY|Z=z, then

pXY(Xi,Yj) = 0.

Proof. Without loss of generality, assume that ÝÑK (X : Y||Z) = I(X : Y|Z). For distribution
pXY|Z=z with maximal common partition (Xλ,Yλ)

t
λ=1, consider arbitrary (xi, yi) P Xi ˆ Yi and

(xj, yj) P Xj ˆ Yj. Note that from the definition of a maximal common partitioning, we have that
p(xi, z)p(yi, z) ą 0, but we need not have that p(xi, yi, z) ą 0.

We will prove that p(xi, yj, z1) = 0 for all z1 P Z (clearly this already holds when z1 = z).
Suppose on the contrary that p(xi, yj, z1) ą 0. Since p(xi, z) ą 0, there will exist some y1i P Yi
such that p(xi, y1i, z) ą 0. Then the Markov chain condition KU ´ X ´ YZ implies that for some
(k, u) P Kˆ U such that p(k, u|xi) ą 0, we have

p(k, u|xi) = p(k, u|xi, y1i, z) = p(k, u|xi, yj, z1) ą 0. (29)

Eq. (29) implies that both p(k, u|y1i, z) ą 0 and p(k, u|yj, z1) ą 0. From p(u|y1i, z) ą 0 and the
Markov chain U ´ Z´Y, we have that p(u|yj, z) ą 0. Then we can further derive

0 ă p(k, u|yj, z1) = p(u|yj, z1)p(k|u, yj, z1)
= p(u|yj, z1)p(k|u, yj, z)

ñ p(k|u, yj, z) ą 0,

ñ p(k, u|yj, z) = p(k|u, yj, z)p(u|yj, z) ą 0, (30)

where we have used the Markov chain K ´ YU ´ Z. From the last line, we must be able to find
some x1j P Xj such that p(x1j, yj, z) ą 0 and p(k, u|x1j, yj, z) ą 0. Inverting probabilities gives that
both p(x1j, yj|k, u, z) ą 0 and p(xi, y1i|k, u, z) ą 0. Hence,

I(X : Y|KUZ) = I(JXY|ZX : Y|KUZ)

= I(X : Y|JXY|ZKUZ) +
ÿ

k,u,z

H(JXY|Z=z|k, u, z)p(k, u, z) ą 0, (31)

since H(JXY|Z=z|k, u, z) ą 0 because (xi, y1i) P Xi ˆ Yi and (x1j, yj) P Xj ˆ Yj. However, this strict
inequality contradicts the Markov chain condition X´ KUZ´Y.

Figure 2 (a) provides an example distribution which does not satisfy the necessary conditions
of Theorem 2 for I(X : Y|Z) to be an achievable one-way key rate. On the other hand, Figure 2 (b)
depicts an distribution for which the conditions of the theorem are met. However, Theorem 3 in
the next section will show that both distributions (a) and (b) have K(X : Y||Z) ă I(X : Y|Z).

4.3 Obtaining I(X : Y|Z) with Two-Way Communication

We now turn to the general scenario of interactive two-way communication. Our main result is
the necessary structural condition of Theorem 3. Its statement requires some new terminology.

For two distributions pXY and qXY over X ˆ Y , we say that qXY đ pXY if, up to a permutation
between X and Y, the distributions satisfy supp[qX] Ă supp[pX] and one of the three additional
conditions: (i) qXY is uncorrelated, (ii) supp[qY] Ă supp[pY], or (iii) y P supp[qY]zsupp[pY] implies
that H(X|Y = y) = 0.
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(a)

X ÝÑ

Y

Ó

Z = 0 0 1 2

0 1/2 ¨ ¨
1 ¨ 1/2 ¨
2 ¨ ¨ ¨

Z = 1 0 1 2

0 ¨ ¨ 1/3

1 ¨ ¨ 1/3

2 ¨ 1/3 ¨

Z = 2 0 1 2

0 ¨ ¨ ¨
1 ¨ ¨ 1/3

2 ¨ 1/3 1/3

(b)

X ÝÑ

Y

Ó

Z = 0 0 1 2

0 1/2 ¨ ¨
1 ¨ 1/2 ¨
2 ¨ ¨ ¨

Z = 1 0 1 2

0 ¨ ¨ 1/3

1 ¨ 1/3 1/3

2 ¨ ¨ ¨

Z = 2 0 1 2

0 ¨ ¨ ¨
1 ¨ ¨ 1/3

2 ¨ 1/3 1/3

Figure 2: (a) The conditions for a one-way key rate of I(X : Y|Z) given by Theorem 2 are violated for this
distribution. To see this, note that the events (X = 1, Y = 2) and (X = 2, Y = 1) are both possible when
Z = 1. Hence, Theorem 2 necessitates p(1, 1) = 0, which is not the case because of the plane Z = 0.
Distribution (b) lacks this characteristic and therefore it satisfies the conditions of Theorem 2.

Theorem 3. Let pXYZ be a distribution overX ˆY ˆZ such that pXY|Z=z1
đ pXY|Z=z0 for some z0, z1 P Z .

If there exists some pair (x, y) P supp[pX|Z=0]ˆ supp[pY|Z=0] for which p(x, y|z1) ą 0 but p(x, y|z0) =
0, then K(X : Y||Z) ă I(X : Y|Z).
Proof. The proof will involve showing that there exists a channel Z|Z such that I(X : Y|Z) ă I(X :
Y|Z). The channel will involve mixing z0 and z1 but leaving all other elements unchanged. Define
the function

f (t) = I(X : Y)(1´t)pXY|Z=z0
+tpXY|Z=z1

t P [0, 1], (32)

which gives the mutual information of the mixed distribution (1´ t)pXY|Z=z0 + tpXY|Z=z1
. The

function f is continuous and twice differentiable in the open interval (0, 1). To prove the theorem,
we will need a simple general fact about functions of this sort.

Proposition 5. Suppose that f is a continuous function on the closed interval [0, 1] and twice differentiable
in the open interval (0, 1). Suppose there exists some 0 ă δ ă 1 such that f is strictly convex in the interval
I = (0, δ] and f (1)´ f (0) ą f 1(t) for all t P I . Then f (t) ă (1´ t) f (0) + t f (1) for all t P I .

Proof. Introduce the linear function g(t) = (1´ t) f (0) + t f (1). Note that by assumption we have
g1(t) ą f 1(t) for t P X . We want to show that f (t) ă g(t) for t P I . We have

g(t) = (1´ t
δ )g(0) + t

δ g(δ) ą (1´ t
δ ) f (0) + t

δ f (δ) ą f (t). (33)

Here, the first inequality follows from the facts that f (0) = g(0) and 0 ą g1(t) ą f 1(t) for t P I (so
g(δ) ą f (δ)); and the second inequality uses the strict convexity of f in I .

Continuing with the proof of Theorem 3, it will suffice to show that the function given by
Eq. (32) satisfies the conditions of Proposition 5. For if this is true, then we can argue as follows.
Choose ε sufficiently small so that εp(z1)

p(z0)+εp(z1)
P (0, δ], where δ is described by the proposition.

Define the channel Z|Z by p(z0|z1) = ε, p(z1|z1) = 1´ ε, and p(z|z) = 1 for all z = z1 P Z .
This means that p(z0) = p(z0) + εp(z1) and p(z1) = (1´ ε)p(z1), and inverting the probabilities
gives p(z1|z1) = 1, p(z1|z0) = εp(z1)

p(z0)+εp(z1)
, and p(z0|z0) = p(z0)

p(z0)+εp(z1)
. Since p(x, y|Z = z) =

13



ř

z p(x, y|Z = z)p(Z = z|Z = z), the average conditional mutual information is
ÿ

z =z0,z1PZ
I(X : Y|Z = z)p(z) + f ( εp(z1)

p(z0)+εp(z1)
)p(z0) + f (1)p(z1)

ă
ÿ

z =z0,z1PZ
I(X : Y|Z = z)p(z) +

(
p(z0)

p(z0)+εp(z1)
f (0) + εp(z1)

p(z0)+εp(z1)
f (1)

)
p(z0) + f (1)(1´ ε)p(z1)

= I(X : Y|Z), (34)

where Proposition 5 at x = εp(z1)
p(z0)+εp(z1)

has been invoked.
Let us then show that the conditions of Proposition 5 hold true for the function given by Eq.

(32) whenever pXY|Z=z1
đ pXY|Z=z0 ; i.e. that there exists some interval (0, δ] for which f is strictly

convex and f (1)´ f (0) ą f 1(t). We have

f (t) =´
ÿ

xPX
[(1´ t)p(x|z0) + tp(x|z1)] log[(1´ t)p(x|z0) + tp(x|z1)]

´
ÿ

yPY
[(1´ t)p(y|z0) + tp(y|z1)] log[(1´ t)p(y|z0) + tp(y|z1)]

+
ÿ

xPX

ÿ

yPY
[(1´ t)p(x, y|z0) + tp(x, y|z1)] log[(1´ t)p(x, y|z0) + tp(x, y|z1)]. (35)

We are interested in limtÑ0 f 1(t) and limtÑ0 f 2(t). To compute these, we use the fact that the
function g(t) = (r + st) log(r + st) satisfies g1(t) = s(1 + log(r + st)) and g2(t) = s2

r+st . We
separate the analysis into three cases. Without loss of generality, we will assume supp[pX|Z=z1

] Ă
supp[pX|Z=z0 ].

Case (i): pXY|Z=z1 is uncorrelated.
Since supp[pX|Z=z1

] Ă supp[pX|Z=z0 ], we can assume that p(x|z0) = 0 for all x; otherwise there
is no term involving x in Eq. (35). Now suppose that p(y|z0) = 0. Then for this fixed y, the
summation over x in the third term of Eq. (35) becomes

ÿ

xPX
[(1´ t)p(x, y|z0) + tp(x, y|z1)] log[(1´ t)p(x, y|z0) + tp(x, y|z1)]

= t
ÿ

xPX
p(x|z1)p(y|z1) log[tp(x|z1)p(y|z1)]

= tp(y|z1) log[tp(y|z1)] + tp(y|z1)
ÿ

xPX
p(x|z1) log[p(x|z1)]. (36)

Hence, by letting BI = ty : p(y|zI) ą 0u for I P t0, 1u, we can equivalently write Eq. (35) as

f (t) =´
ÿ

xPX
[(1´ t)p(x|z0) + tp(x|z1)] log[(1´ t)p(x|z0) + tp(x|z1)]

´
ÿ

yPB0

[(1´ t)p(y|z0) + tp(y|z1)] log[(1´ t)p(y|z0) + tp(y|z1)]

+
ÿ

yPB0

ÿ

xPX
[(1´ t)p(x, y|z0) + tp(x, y|z1)] log[(1´ t)p(x, y|z0) + tp(x, y|z1)]

+ t
ÿ

yPB1zB0

p(y|z1)
ÿ

xPX
p(x|z1) log[p(x|z1)]. (37)
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If p(x, y|z0) = 0 for some (x, y) P X ˆ B0, then the first derivative of (37) will diverge to ´8 as
t Ñ 0 while its second derivative will diverge to +8whenever p(x, y|z1) ą 0. But by assumption,
there is at least one pair of (x, y) for which this latter case holds. Hence, an interval (0, δ] can
always be found for which Proposition 5 can be applied to f .

Case (ii): B1zB0 = H.
This is covered in case (iii).

Case (iii): y P B1zB0 ñ p(y|z1) = p(xy, y|z1) for some particular xy P X .
The condition p(y|z1) = p(xy, y|z1) implies that p(x, y|z1) = 0 for all x = xy. Then similar to

the previous case, when y P B1zB0, the summation over x in the third term of Eq. (35) is
ÿ

xPX
tp(x, y|z1) log[tp(x, y|z1)] = tp(xy, y|z1) log[tp(xy, y|z1)]

= tp(y|z1) log[tp(y|z1)]. (38)

Hence each term with y P B1zB0 becomes canceled in Eq. (35). Then Eq. (35) reduces to

f (t) =´
ÿ

xPX
[(1´ t)p(x|z0) + tp(x|z1)] log[(1´ t)p(x|z0) + tp(x|z1)]

´
ÿ

yPB0

[(1´ t)p(y|z0) + tp(y|z1)] log[(1´ t)p(y|z0) + tp(y|z1)]

+
ÿ

xPX

ÿ

yPB0

[(1´ t)p(x, y|z0) + tp(x, y|z1)] log[(1´ t)p(x, y|z0) + tp(x, y|z1)]. (39)

As in the previous case, the first derivative of this function will diverge to ´8 while its second
derivative will diverge to +8 whenever p(x, y|z1) ą 0 and p(x, y|z0) = 0. By assumption, such
a pair (x, y) exists, and so again, an interval (0, δ] can always be found for which Proposition 5
can be applied to f . Note that when B1zB0 = H, as in case (ii), Eq. (39) is equivalent to (35). The
derivative argument can thus be applied directly to (35).

Theorem 3 is quite useful in that it allows us to quickly eliminate many distributions from
achieving the rate I(X : Y|Z). For example, consider when pXY|Z=z is uncorrelated for some z P Z ,
but pXY|Z=z1 is perfectly correlated for some other z1 P Z with either supp[pX|Z=z] Ă supp[pX|Z=z1 ]
or supp[pY|Z=z] Ă supp[pY|Z=z1 ]. Here, perfectly correlated means that p(x, y|z1) = p(x|z1)δx,y up
to relabeling. Then from Theorem 3, it follows that I(X : Y|Z) is an achievable rate only if

p(x, y|z) ą 0 ñ p(x|z1)p(y|z1) = 0.

In other words, it is always possible for either Alice or Bob to identify when Z = z1.
Finally, we close this section by comparing Theorems 2 and 3. In short, neither one supersedes

the other. As noted above, distribution (b) in Fig. 2 satisfies the necessary condition of Theorem 2
for ÝÑK (X : Y||Z) = I(X : Y|Z). However, Theorem 3 can be used to show that K(X : Y||Z) ă I(X :
Y|Z). This is because pXY|Z=1 đ pXY|Z=2 yet p(1, 1|2) = 0 while p(1, 1|1) = 1/3. Therefore its key
rate is strictly less than I(X : Y|Z). Figure 3 depicts a distribution for which Theorem 3 cannot
be applied but Theorem 2 shows that ÝÑK (X : Y||Z) ă I(X : Y|Z). The two-way key rate for this
distribution is still unknown.
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X ÝÑ

Y

Ó

Z = 0 0 1 2

0 1/7 1/7 �

1 1/7 1/7 1/7

2 � 1/7 1/7

Z = 1 0 1

0 1/2 �

1 � 1/2

Figure 3: The event (x, y) = (0, 1) has conditional probabilities p(0, 1|Z = 0) ą 0 and p(0, 1|Z = 1) = 0.
However, we cannot use these facts in conjunction with Theorem 3 to conclude that K(X : Y||Z) ă I(X :
Y|Z) since the distribution does not satisfy pXY|Z=0 đ pXY|Z=1 (neither supp[pX|Z=0] Ă supp[pX|Z=1] nor
supp[pY|Z=0] Ă supp[pY|Z=1]). On the other hand, since p(0, 1|Z = 0) ą 0, Theorem 2 can be applied to
conclude that the one-way rate is less than I(X : Y|Z).

4.4 Communication Dependency in Optimal Distillation

We next consider some general features of the public communication when performing optimal
key distillation. Our main observations will be that (i) attaining a key rate of I(X : Y|Z) by
one-way communication may depend on the direction of the communication, and (ii) two-way
communication may be necessary in order to achieve the key rate I(X : Y|Z).
Example (Optimal one-way distillation depends on communication direction). Consider the dis-
tribution depicted in Fig. 4 with I(X : Y|Z) = 1/3. When Bob is the communicating party, a
protocol attaining this as a key rate is obvious: he simply announces whether or not y P t0, 1u. If
it is, they share one bit, otherwise they fail. Hence, I(X : Y|Z) = 1/3 is an achievable key rate.

However, the interesting question is whether or not the key rate I(X : Y|Z) is achievable by
one-way communication from Alice to Bob. We will now show that this is not possible. By Lemma
4, in order to obtain the rate I(X : Y|Z), there must exist random variables U and V satisfying Eq.
(28). Assume that such variables exist. If U´Z´Y, then p(u|X = 0)p(u|X = 1) ą 0 for all U = u;
otherwise, U and Y couldn’t be independent. But then X´KUZ´Y applied to Z = 0 means there
must exist a pair (k, u) P Kˆ U such that

p(k, u|X = 0) = 0 & p(k, u|X = 1) ą 0.

Hence, 0 = p(k|Y = 2, U = u, Z = 2) ă p(k|Y = 2, U = u, Z = 1), which contradicts K´YU ´ Z.
Thus ÝÑK (X : Y||Z) ă I(X : Y|Z) =ÐÝK (X : Y||Z).

In this example, notice that if we restricted Eve’s distribution to Z = t0, 1u (i.e p(Z = 2) = 0),
then the rate I(X : Y|Z) would indeed be achievable using one-way communication from Alice
to Bob. This is because without the z = 2 outcome, the Markov Chain X ´ Y ´ Z holds. Such a
result is counter-intuitive since Alice and Bob share no correlations when z P t1, 2u. And yet the
distribution becomes one-way reversible from Alice to Bob when p(Z = 2) = 0, but otherwise it
is not.

X ÝÑ

Y
Ó

Z = 0 0 1

0 1/2 ¨
1 ¨ 1/2

2 ¨ ¨
p(Z = 0) = 1

|Z|

Z = 1 0 1

0 ¨ ¨
1 ¨ ¨
2 1/2 1/2

p(Z = 1) = 1

|Z|

Z = 2 0 1

0 ¨ ¨
1 ¨ ¨
2 1 ¨
p(Z = 2) = 1

|Z|

Figure 4: A distribution requiring communication from Bob to Alice to achieve a key rate of I(X : Y|Z).
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X ÝÑ

Y
Ó

Z = 3 0 1 2

0 ¨ ¨ 1/2

1 ¨ ¨ 1/2

p(Z = 3) = 1

|Z|

Z = 4 0 1 2

0 ¨ ¨ 1

1 ¨ ¨ ¨
p(Z = 4) = 1

|Z|

Figure 5: Additional outcomes augmented to the distribution of Fig. 4. The enlarged distribution can no
longer attain a key rate of I(X : Y|Z) unless both parties communicate.

Example (Optimal distillation requires two-way communication). The previous example can be
generalized by adding two more outcomes for Eve so that |Z| = 5. The additional outcomes are
shown in Fig. 5 and this is combined with Fig. 4 to give the full distribution. Notice that the
distribution pXY|Z=3 is obtained from pXY|Z=1 simply by swapping Alice and Bob’s variables, and
likewise for pXY|Z=4 and pXY|Z=2. Hence by the argument of the previous example, if Eve were
to reveal whether or not z P t0, 3, 4u, then the average Bob-to-Alice distillable key conditioned on
this information would be less than I(X : Y|Z). Likewise, if Eve were to reveal whether or not z P
t0, 1, 2u, then the Alice-to-Bob distillable key conditioned on this information would be less than
I(X : Y|Z). Thus since the average conditional key rate cannot exceed the key rate with no side
information, we conclude that I(X : Y|Z) is unattainable using one one-way communication in
either direction. On the other hand, the distribution is easily seen to admit a key rate of I(X : Y|Z)
when the parties simply announce whether or not their variable belongs to the set t0, 1u.

5 Conclusion

In this paper, we have considered when a secret key rate of I(X : Y|Z) can be attained by Alice
and Bob when working with a variety of auxiliary resources. The conditional mutual information
quantifies the private key rate of pXYZ, which is the rate of key private from Eve that is attainable
when Eve helps Alice and Bob by announcing her variable. Therefore, distributions for which
K(X : Y||Z) = I(X : Y||Z) are those for which no assistance is provided by Eve when she functions
as a helper rather than a full adversary.

We have found that with no additional communication, the key rate is I(X : Y|Z) if and only
if the distribution is uniform block independent. Furthermore, supplying Alice and Bob with
additional public randomness does not increase the distillable key rate. While this may not be
overly surprising since the considered common randomness is uncorrelated with the source, it is
nevertheless a nontrivial result because in general, randomness can serve a resource in distillation
tasks [AC93, OSS14].

Turning to the one and two-way communication scenarios, we have presented in Theorems 2
and 3 necessary conditions for a distribution to attain the key rate I(X : Y|Z). The conditions we
have derived are all single-letter structural characterizations, and they are thus computationally
easy to apply. We leave open the question of whether Theorem 3 is also sufficient for attaining
I(X : Y|Z), although we have no strong reason to believe this is true. Further improvements
to the results of this paper can possibly be obtained by studying tighter bounds on K(X : Y||Z)
than the intrinsic information such as those presented in Refs. [RW03] and [GA10]. Nevertheless,
we hope this paper has shed new light on the problem of secret key distillation under various
communication settings.
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7 Appendix

7.1 Proof of Propositions 1 and 2

Proposition.

(a) Every pair of finite random variables XY has a unique maximal common partitioning.

(b) Variable JXY satisfies

H(JXY) = max
K
tH(K) : 0 = H(K|X) = H(K|Y)u

iff JXY is a common function for the maximal common partitioning of XY.

(c) If f (X) = g(Y) = C is any other common function of X and Y, then C(JXY).

Proof. (a) Trivially X ˆY gives a common partitioning of length one, and any common partition-
ing cannot have length exceeding mint|X |, |Y |u; hence a maximal common partitioning exists. To
prove uniqueness, suppose that (Xi,Yi)

t
i=1 and (X 1i ,Y 1i )t

i=1 are two maximal common partition-
ings. If they are not equivalent, then there must exist some subset, say Xi0 such that Xi0 Ă YK

λ=1X 1λ
in which Xi0 XX 1λ = H for λ = 1, ¨ ¨ ¨ , K ě 2. Choose any such X 1λ0

from this collection and define
the new sets Ri0 = Xi0 XX 1λ0

and R̃i0 = Xi0zX 1λ0
, which are both nonempty since k ě 2 and the Xλ

are disjoint. However, we also have the properties

x P Xi0 ñ p(Yi0 |x) = 1; x P X 1λ0
ñ p(Y 1λ0

|x) = 1;

x R Xi0 ñ p(Yi0 |x) = 0; x R X 1λ0
ñ p(Y 1λ0

|x) = 0.

(Here we are implicitly using condition (iii) in the above definition by assuming that p(x) ą 0
thereby defining conditional distributions). Therefore, p(Si0 |Ri0) = p(S̃i0 |R̃i0) = 1 and p(Si0 |R̃i0) =
p(S̃i0 |Ri0) = 0, where Si0 = Yi0 XY 1λ0

and S̃i0 = Yi0zY 1λ0
. A similar argument shows that p(Ri0 |Si0) =

p(R̃i0 |S̃i0) = 1 and p(Ri0 |S̃i0) = p(R̃i0 |Si0) = 0. Hence, (Xi,Yi)
t
i =i0

Ť

(Si0 , Ri0)
Ť

(S̃i0 , R̃i0) is a com-
mon partitioning of length t + 1. But this is a contradiction since (Xi,Yi)

t
i=1 is a maximal common

decomposition.
(b) Suppose that K satisfies 0 = H(K|X) = H(K|Y) so that K = f (X) = g(Y) for some

functions f and g. It is clear that f and g must be constant-valued for any pair of values taken from
same block Xi ˆ Yi in the maximal common partitioning of XY. Hence the maximum possible
entropy of K is then attained iff f and g take on a different value for each block in this partitioning.

(c) Suppose that C is not a function of JXY. Then H(CJXY) ą H(JXY), which contradicts the
maximality of JXY.

Proposition. If JXY(x) = JXY(x1) for x, x1 P JXY, then there exists a sequence of values

xy1x1y2x2 ¨ ¨ ¨ ynx1

such that p(xy1)p(y1x1)p(x1y2) ¨ ¨ ¨ p(ynx1) ą 0.
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Proof. Define the sets

S0 = txu, T1 = ty : p(y|S0) ą 0u
S1 = tx R S0 : p(x|T1) ą 0u, T2 = ty R T1 : p(y|S1 Y S0) ą 0u
¨ ¨ ¨ , Tn = ty R Tn´1 : p(y| Yn´1

k=0 Sk) ą 0u,
Sn = tx R Sn´1 : p(x| Yn

k=1 Tk) ą 0u, ¨ ¨ ¨. (40)

Since X and Y are finite sets, there must exist some M and N such that SM+1 = H and TN+1 = H.
Define S = YM

k=0Sk and T = YN
k=1Tk. By construction we have p(S|T) = p(T|S) = 1, and since

JXY(x) = JXY(x1) we must have x, x1 P S. However, again by construction, we can always find a
sequence xy1x1y2x3 ¨ ¨ ¨ ynx1 with xk P Yk

i=0Si and yk P Yk
i=1Ti, and so

p(xy1)p(y1x1)p(x1y2) ¨ ¨ ¨ p(ynx1) ą 0.

References

[AC93] R. Ahlswede and I. Csiszár. Common randomness in information theory and cryptog-
raphy. i. secret sharing. Information Theory, IEEE Transactions on, 39(4):1121–1132, 1993.
doi:10.1109/18.243431.

[BBCM95] C.H. Bennett, G. Brassard, C. Crepeau, and U.M. Maurer. Generalized privacy am-
plification. Information Theory, IEEE Transactions on, 41(6):1915–1923, 1995. doi:
10.1109/18.476316.

[CFH14] Eric Chitambar, Ben Fortescue, and Min-Hsiu Hsieh. A classical analog to entangle-
ment reversibility, 2014. manuscript in preparation.

[CK11] Imre Csiszár and Janos Körner. Information Theory: Coding Theorems for Discrete Memo-
ryless Systems. Cambridge University Press, Cambridge, UK, 2011.

[CN00] I. Csiszár and P. Narayan. Common randomness and secret key generation with a
helper. Information Theory, IEEE Transactions on, 46(2):344–366, 2000. doi:10.1109/
18.825796.

[CRW03] M. Christandl, R. Renner, and S. Wolf. A property of the intrinsic mutual information.
In Information Theory, 2003. Proceedings. IEEE International Symposium on, pages 258–
258, June 2003. doi:10.1109/ISIT.2003.1228272.

[GA10] A.A. Gohari and V. Anantharam. Information-theoretic key agreement of multiple
terminals; part i. Information Theory, IEEE Transactions on, 56(8):3973–3996, 2010. doi:
10.1109/TIT.2010.2050832.
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