Задание 1. Исследование частотных характеристик.

Для схем, изображенных на рис.1п, найти:

- а. Указанную в таблице 1п комплексную передаточную функцию $H(j\omega)$, для чего к зажимам 1-1 присоединить источник, а к зажимам 2-2 сопротивление нагрузки $Z_{\rm H}$, которое носит резистивный характер.
- б. Выделить из комплексной передаточной функции AЧX $H(\omega)$ и Φ ЧX $\theta(\omega)$. Записать найденные выражения в зависимости от относительной частоты Ω , где $\Omega = \omega L/R$ или $\Omega = \omega RC$.
- в. Рассчитать найденные частотные характеристики на десяти частотах, включая 0 и ∞ . Построить графики AЧX и Φ ЧX в зависимости от относительной частоты.
- г. Используя заданные параметры цепи R, L, C, сделать переход к угловой частоте ω [рад./с] и к реальной частоте ω [Гц]. Изобразить ось реальных частот на графиках АЧХ и ω
 - д. Сделать вывод о способности четырехполюсника пропускать сигналы разных частот.

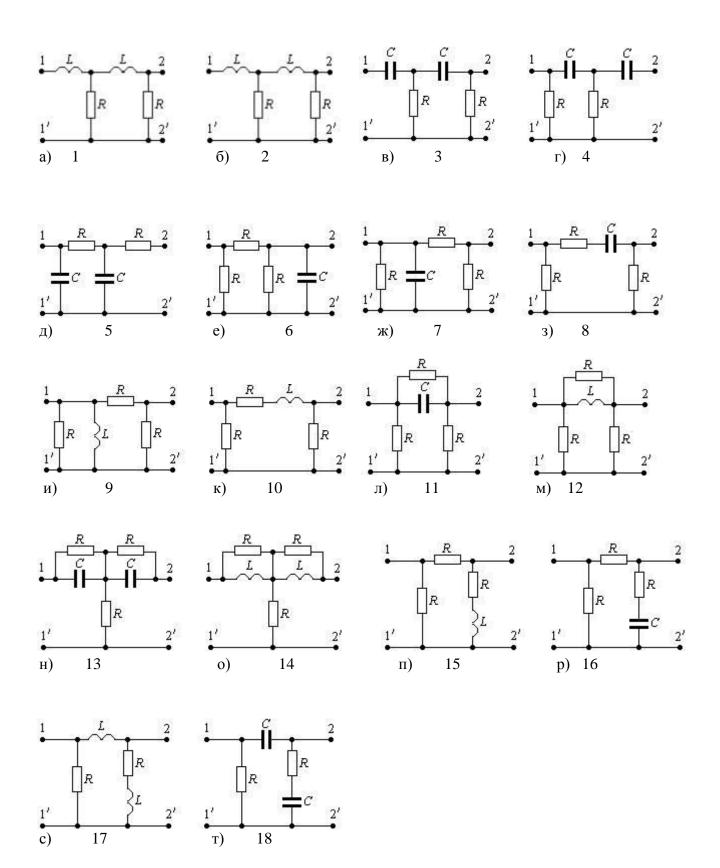


Рис. 1п.

Bap.	Схема	Схема	L , м Γ н	C , мк Φ	<i>R</i> ,Ом	$Z_{\scriptscriptstyle H}$, Om	Определить $H(j\omega)$
							2147
1	a	1	10	-	4000	2 <i>R</i>	$Z_{II.}$
2	б	2	200	-	10	4 <i>R</i>	$Z_{\Pi.}$
3	В	3	-	2.0	300	3 <i>R</i>	$Z_{\Pi.}$
4	Γ	4	-	0.5	1000	R	$Z_{\Pi.}$
5	Д	5	-	0.1	500	R	$Z_{II.}$
6	e	6	-	0.2	300	2 <i>R</i>	$Z_{II.}$
7	Ж	7	-	1.5	50	2 <i>R</i>	$Z_{II.}$
8	3	8	-	2.5	600	R	$Z_{\Pi.}$
9	И	9	100	-	400	4 <i>R</i>	$Z_{II.}$
10	К	10	150	-	200	R	Z_{arPi}
11	П	15	20	-	3000	R	$Z_{II.}$
12	0	14	400	-	20	3 <i>R</i>	$Z_{II.}$
13	M	12	40	-	400	R	$Z_{\Pi_{\cdot}}$
14	Л	11	-	1.5	2000	2 <i>R</i>	$Z_{II.}$
15	Н	13	-	0.2	200	3 <i>R</i>	$Z_{\Pi_{\cdot}}$
16	p	16	-	0.1	400	R	$Z_{\Pi.}$
17	Т	18	-	3.0	60	2 <i>R</i>	$Z_{\Pi.}$
18	c	17	20	-	500	2 <i>R</i>	$Z_{II.}$
19	И	9	200	-	250	R	$Z_{II.}$
20	К	10	80		400	3 <i>R</i>	$Z_{II.}$
21	a	1	30	-	2500	R	$Z_{\Pi.}$
22	б	2	300	-	350	5R	$Z_{II.}$
23	П	15	60	-	600	2 <i>R</i>	$Z_{\Pi.}$
24	Γ	4	-	4.5	4000	R	$Z_{\Pi.}$
25	Д	5	-	0.5	300	R	$Z_{\Pi_{\cdot}}$
26	e	6	-	0.2	500	R	$Z_{II.}$
27	Ж	7	-	4.0	80	3 <i>R</i>	$Z_{II.}$
28	c	17	60	-	150	2 <i>R</i>	$Z_{II.}$
29	M	12	150	-	800	4 <i>R</i>	$Z_{II.}$
30	Л	11	-	3.5	200	3 <i>R</i>	$Z_{II.}$

Таблица 1п.

Задание 2. Несинусоидальные периодические токи.

На входе цепи рис. 1 п действует источник несинусоидального периодического сигнала - тока или напряжения, форма которого задана в таблице 2. Здесь под V следует понимать либо максимальное значение тока V = 10~A, либо максимальное значение напряжения V = 100~B. Характер воздействия определен выбором варианта задания и указан в таблице 2 п: $i_1(t)$ или $u_1(t)$.

Во всех вариантах задания считать, что на основной (первой) гармонике сигнала выполняются численные равенства $x_{C1} = 2R$; $x_{L1} = 0.5R$.

Для сигналов прямоугольной формы 5 и 6 (табл.2) принять отношение длительности сигнала к периоду Т равным любому из значений:

$$\tau/T = 0.10; 0.15; 0.20; 0.25.$$

Параметры цепи выбираются по номеру варианта из таблицы 1п.

Требуется исследовать процесс прохождения сигнала в цепи, для чего следует:

- а. В соответствии с указанным вариантом подсоединить к входным зажимам источник сигнала, а к выходным сопротивление нагрузки.
- б. Ограничиваясь первыми пятью значащими членами ряда Фурье, рассчитать амплитудный и фазовый спектр входного сигнала.
- в. Найти АЧХ и ФЧХ исследуемой цепи. Используя указанные выше соотношения резистивных и реактивных параметров, записать выражения для АЧХ и ФЧХ как функции целочисленной переменной k. Если эти характеристики уже были найдены при выполнении Задания 1, то перейти в них от относительной переменной к целочисленной k. Найти численные значения характеристик для выбранных значений k.
- г. Рассчитать амплитудный и фазовый спектр выходного сигнала. Численные значения, определенные в пунктах б, в и г свести в таблицу.
- д. Построить графики АЧХ и ФЧХ исследуемой цепи в зависимости от целочисленной переменной k.
- е. Записать выражение выходного сигнала как сумму гармоник и построить график этой функции. Сравнить этот график с построенным графиком входного сигнала.
 - ж. Определить интегральные характеристики выходного сигнала:
 - 1. Действующее значение;
 - 2. Коэффициенты амплитуды, формы, нелинейных искажений.

Таблица 2п

Bap	Вар Схема		й сигнал	Передаточная характеристика	Выходной сигнал
		вид	характер	$H(j\omega)$	u(t)
1	a	1	i_1	Z_{arDeta}	u_2
2	б	2	i_1	Z_{arDeta}	u_2
3	В	3	i_1	Z_{arDeta}	u_2
4	Γ	4	i_1	Z_{arDeta}	u_2
5	Д	5	i_1	Z_{arDeta}	u_2
6	e	6	i_1	Z_{arDeta}	u_2
7	Ж	7	i_1	Z_{arDeta}	u_2
8	3	8	i_1	Z_{arDeta}	u_2
9	И	1	i_1	Z_{arDeta}	u_2
10	К	2	i_1	Z_{arDeta}	u_2
11	П	3	i_1	Z_{II}	u_2
12	0	4	i_1	Z_{arDeta}	u_2
13	M	5	i_1	Z_{arDeta}	u_2
14	Л	6	i_1	Z_{II}	u_2
15	Н	7	i_1	Z_{arDeta}	u_2
16	p	8	i_1	Z_{arDeta}	u_2
17	T	1	i_1	Z_{II}	u_2
18	c	2	i_1	Z_{arDeta}	u_2
19	И	3	i_1	Z_{arDeta}	u_2
20	К	4	i_1	Z_{II}	u_2
21	a	5	i_1	Z_{arDeta}	u_2
22	б	6	i_1	Z_{arDeta}	u_2
23	П	7	i_1	Z_{II}	u_2
24	Γ	8	i_1	Z_{II}	u_2
25	Д	1	i_1	Z_{arDeta}	u_2
26	e	2	i_1	Z_{arDeta}	u_2
27	ж	3	i_1	Z_{II}	u_2
28	c	4	i_1	Z_{II}	u_2
29	M	5	i_1	Z_{II}	u_2
30	Л	6	i_1	Z_{II}	u_2

Разложение в ряд Фурье периодических функций

Таблица 2

Γ График $f(t)$ Ряд Фурье функции $f(t)$ Примечани						
Γ рафик $f(t)$	ик $f(t)$ Ряд Фурье функции $f(t)$					
		e				
V 1	$f(t) = \frac{4V}{\pi} \sum_{k=1}^{\infty} \frac{\sin k\omega t}{k}$	$k=1,3,5,$ $\omega = \frac{2\pi}{T}$				
V - 2	$f(t) = \frac{8V}{\pi^2} \sum_{k=1}^{\infty} (-1)^{\frac{k-1}{2}} \frac{\sinh \omega t}{k^2}$	$k=1,3,5,$ $\omega = \frac{2\pi}{T}$				
	$f(t) = \frac{4V}{\omega \tau \pi} \sum_{k=1}^{\infty} \frac{\sinh \omega \tau}{k^2} \sin k\omega t$	$k=1,3,5,$ $\omega = \frac{2\pi}{T}$				
(4) V	$f(t) = \frac{V}{2} - \frac{V}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \text{sinkox}$	$k=1,2,3,4,5$ $\omega = \frac{2\pi}{T}$				
	$f(t) = \frac{4V}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{k\omega \tau}{2} \cos k\omega t$	$k=1,3,5,$ $\omega = \frac{2\pi}{T}$				
	$f(t) = V \left[\frac{\tau}{T} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{k \omega \tau}{2} \cos k \omega t \right]$	$k=1,2,3,4,5$ $\omega = \frac{2\pi}{T}$				
	$f(t) = \frac{4V}{\pi} \left[\frac{1}{2} + \sum_{S=1}^{\infty} \frac{(-1)^{S+1}}{(2S)^2 - 1} \cos 2S\omega t \right]$	$S=1,2,3,4,$ $\omega = \frac{2\pi}{T}$				
$ \begin{bmatrix} $	$f(t) = \frac{2V}{\pi} \left(\frac{1}{2} + \frac{\pi}{4} \cos \omega t + \frac{1}{1 \cdot 3} \cos 2\omega t - \frac{1}{3 \cdot 5} \cos 4\omega t + \frac{1}{5 \cdot 7} \cos 6\omega t \right)$	$k=1,2,4,6,$ $\omega = \frac{2\pi}{T}$				